News Postings

James Webb Space Telescope 1
February 7, 2022
Saint Mary's University and the James Webb Space Telescope
SMU astronomers ready to probe the Universe using most powerful space telescope ever built
L-R: Sebastien Roy-Garand (SMU Undergrad student), Preetinder Jassal (SMU Ph.D. student), Greg Hackman (TRIUMF Scientist), Dr. Rituparna Kanungo (IRIS project leader & SMU Professor), Matthias Holl (SMU-TRIUMF IRIS PDF), Conor Waterfield (SMU student). Photo credit: TRIUMF.
December 16, 2021
IRIS provides a glimpse of deformation in helium-8
New TRIUMF research from the Saint Mary’s University-led IRIS group has unveiled an unexpected shape deformation in the nucleus of helium-8, providing further insight into the unique dynamics of how neutron-rich nuclei take shape and maintain stability. (From TRIUMF www site.)
December 16, 2021
We're seeking to hire a full-time Astronomy Technician
We are currently seeking a full-time Astronomy technician to maintain and operate the campus-based Burke-Gaffney Observatory (BGO) and the Departmental network/server domain.
New Posting Image
August 20, 2021
Congratulations to three students for successful thesis defences!
Congratulations to three students for successful thesis defences!

Congratulations to three Astronomy and Physics students!

Margaret Buhariwalla defends MSc thesis

August 16, 2021

Congratulations to Margaret who successfully defended her thesis on “Weird NLS1s: A Multi-epoch, broadband analysis to study the X-ray emission in Mrk 1239 and WKK 4438”.  She worked with Dr. Luigi Gallo for her MSc and Drs. Austin and Short were on her examination committee.

Well done, Margaret!

Kamalpreet Kaur defends MSc thesis

August 12, 2021

Congratulations to Kamalpreet who successfully defended her thesis entitled “The Nature, Environments, and Origin of Post-Starburst Galaxies”.  She worked with Dr. Ivana Damjanov for her MSc and Drs. Sawicki and Gallo were on her examination committee.

Well done, Kamalpreet!

Adam Gonzalez defends his PhD thesis

August 10, 2021

Congratulations to Adam Gonzalez who successfully defended his Ph.D. thesis, "Probing high-velocity outflows in active galactic nuclei and their relationship to the inner disc environments with X-ray observations" before his thesis defense committee, Drs. Ivana Damjanov (Saint Mary's University), Phil Bennett (Dal), Filippo D’Ammando (INAF – Institute of Radio Astronomy, Bologna), and his advisor, Luigi Gallo (SMU).

Well done Dr Gonzales!! 

First observation of light from behind a black hole

Fulfilling a prediction of Einstein’s Theory of General Relativity, researchers report the first-ever recordings of X-ray emissions from the far side of a black hole.

Saint Mary’s University researcher Dr. Luigi Gallo contributed to the analysis and interpretation of this collaborative research project, which was published in Nature on July 28.

“While we have seen X-ray flares before and we have seen them “reflect” off the accretion disc around the black hole, this is really the first time we have been able to isolate individual events (flares) as originating from behind the black hole,” said Dr. Gallo, who has been working on this type of research for 20 years. 

“This is really important because these regions are so small in size and dynamic on such rapid time scales that it is impossible to take an image.  Events like this allow us to determine what the region closest to the black hole looks like,” he said.

Watching X-rays flung out into the universe by the supermassive black hole at the center of a galaxy 800 million light-years away, Stanford University astrophysicist Dan Wilkins noticed an intriguing pattern. He observed a series of bright flares of X-rays – exciting, but not unprecedented – and then, the telescopes recorded something unexpected: additional flashes of X-rays that were smaller, later and of different “colors” than the bright flares.

According to theory, these luminous echoes were consistent with X-rays reflected from behind the black hole – but even a basic understanding of black holes tells us that is a strange place for light to come from.

“Any light that goes into that black hole doesn't come out, so we shouldn’t be able to see anything that's behind the black hole,” said Wilkins, who is a research scientist at the Kavli Institute for Particle Astrophysics and Cosmology at Stanford and SLAC National Accelerator Laboratory. It is another strange characteristic of the black hole, however, that makes this observation possible. “The reason we can see that is because that black hole is warping space, bending light and twisting magnetic fields around itself,” Wilkins explained. 

The strange discovery, detailed in a paper published in Nature, is the first direct observation of light from behind a black hole – a scenario that was predicted by Einstein’s Theory of General Relativity but never confirmed, until now. 

“Fifty years ago, when astrophysicists starting speculating about how the magnetic field might behave close to a black hole, they had no idea that one day we might have the techniques to observe this directly and see Einstein’s general theory of relativity in action,” said Roger Blandford, a co-author of the paper who is the Luke Blossom Professor in the School of Humanities and Sciences and Stanford and SLAC professor of physics and particle physics.

How to see a black hole

The original motivation behind this research was to learn more about a mysterious feature of certain black holes, called a corona. When material is falling into a supermassive black hole, it powers the brightest continuous sources of light in the Universe, and as it does so, forms a corona around the black hole. This light – which is X-ray light – can be analyzed to map and characterize a black hole.

The leading theory for what a corona is starts with gas sliding into the center of the black hole where it superheats to millions of degrees. At that temperature, electrons separate from atoms, creating a magnetized plasma. Caught up in the powerful spin of the black hole, the magnetic field arcs so high above the black hole, and twirls about itself so much, that it eventually breaks altogether – a situation so reminiscent of what happens around our own Sun that it borrowed the name “corona.”

“This magnetic field getting tied up and then snapping close to the black hole heats everything around it and produces these high energy electrons that then go on to produce the X-rays,” said Wilkins. 

As Wilkins took a closer look to investigate the origin of the flares, he saw the series of smaller flashes. These, the researchers determined, are the same X-ray flares but reflected from the back of the disk – a first glimpse at the far side of a black hole.

“I've been building theoretical predictions of how these echoes appear to us for a few years,” said Wilkins. “I'd already seen them in the theory I’ve been developing, so once I saw them, I could figure out the connection. 

Future observations

The mission to characterize and understand coronas continues and will require more observation. Part of that future will be the European Space Agency’s X-ray observatory, Athena (Advanced Telescope for High-ENergy Astrophysics). As a member of the lab of Steve Allen, professor of physics at Stanford and of particle physics and astrophysics at SLAC, Wilkins is helping to developing part of the Wide Field Imager detector for Athena.

“It's got a much bigger mirror than we've ever had on an X-ray telescope and it's going to let us get higher resolution looks in much shorter observation times,” said Wilkins. “So, the picture we are starting to get from the data at the moment is going to become much clearer with these new observatories. 

Co-authors of this research are from Saint Mary’s University (Canada), Netherlands Institute for Space Research (SRON), University of Amsterdam and The Pennsylvania State University.

This work was supported by the NASA NuSTAR and XMM-Newton Guest Observer programs, a Kavli Fellowship at Stanford University, and the V.M. Willaman Endowment. 

CREDIT: This story originally appeared on Stanford University’s website.

18th Annual Mini-Symposium

On 10 September 2021, Astronomy and Physics hosted our 18th Annual Mini-Symposium on Undergraduate Summer Research. 

Astronomy & Physics would like to thank everyone who attended our second virtual symposium. We hope you will join us in congratulating this year's winners, Abigail Battson, first place, and Colby O'Keefe, second place!



New Posting Image
August 12, 2022
Congratulations to two students for successful thesis defences!
Congratulations to two students for successful thesis defences!
Department of Astronomy and Physics
Offices: Atrium, 3rd floor, Main Office: AT 319
Mailing address:
Saint Mary's University
Halifax Nova Scotia
B3H 3C3