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ABSTRACT 10 

______________________________________________________________________________ 11 

Geochemical data from Katian to earliest Emsian (~453 405 Ma) igneous rocks in northeastern 12 

North America and the British Isles were compiled to identify tectono-magmatic events related 13 

to ocean closure and the formation of the Appalachian Caledonian Belt. These rocks all have 14 

geochemical affinities with plate-margin settings, but only a few can be attributed to arc 15 

magmatism, whereas the others have slab-failure signatures or affinities with anhydrous, 16 

extensional plate-margin (A2-type) settings. Based on these setting attributions as well as 17 

constraints from the palaeomagnetic, palaeontologic, structural, stratigraphic and sedimentologic 18 

records, a model for Iapetus and Rheic ocean closure is proposed, which also involves three 19 

subordinate ocean plate segments: the Tornquist Sea, Acadian Seaway and Tetagouche Exploits 20 

oceanic back-arc basin. The model includes several new perspectives, such as (1) an early 21 

Silurian rather than late Silurian closure of the Tetagouche Exploits back-arc basin; (2) Acadian 22 

Seaway slab failure at the Ludlow Pridoli boundary due to its interaction at depth with the 23 

overlying and slowly-sinking Tetagouche Exploits slab, which generated profuse, extensional, 24 

A2-type volcanism; and (3) an Early Devonian reactivation of Acadian Seaway slab subduction, 25 
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possibly due to Rheic Ocean closure and the convergence of a Gondwanan promontory against 26 

Avalonia, which was attached to oceanic lithosphere of the Acadian Seaway. Furthermore, age 27 

constraints allowed to identify chronological trends in the geochemical signatures of the igneous 28 

rocks under study, which suggest that development of a new tectono-magmatic signature was 29 

gradual due to compositional inheritance from the previous setting. These trends also suggest 30 

that, although the transition from active subduction to slab failure generates an increase in Nb/Y 31 

and light over heavy rare earth elements, these ratios tend to decrease with time due to a fading 32 

contribution of the sinking slab at the source, whereas high-field-strength element contents tend 33 

to increase due to a lack of new water input from subduction. 34 
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1. Introduction 49 

 50 

The Appalachian Caledonian Belt of eastern North America and northern Europe was 51 

formed by oceanic closure, which was accompanied by the accretion of various types of oceanic 52 

terranes and the collision of continental masses. The belt formed the most complex accretionary 53 

zone of Pangaea as it recorded collisions between Gondwana, Laurentia, Baltica and associated 54 

micro-continents that had detached from them (Nance et al., 2012).  55 

In the geology of northeastern North America and the British Isles, the interval separating 56 

the Middle to early Late Ordovician Taconic Grampian orogenies from the late Early to Middle 57 

Devonian Acadian Orogeny is problematic (Woodcock, 2012a-c; Strachan, 2012a,b; Dewey et 58 

al., 2015; Wilson et al., 2017). Based on palaeomagnetic, palaeontologic and provenance studies, 59 

most terranes associated with the peri-Gondwanan and peri-Baltican (sensu Landing et al., 2022) 60 

Avalonian and Ganderian domains (indicated in Fig. 1) were converging with Laurentia during 61 

most of the Ordovician and Silurian, but had already docked with it before the end of the Silurian 62 

(eg., Cocks and Torsvik, 2002; Murphy et al., 2004; van Staal et al., 2009, 2012, 2016; 63 

Woodcock, 2012a,b). However, the conclusions of these studies still need to be reconciled with 64 

the structural and igneous rock records, as the Katian to earliest Emsian interval (~453 405 Ma) 65 

in these terranes is characterized by a paucity of igneous rocks with a clear arc signature and by 66 

rare and not regionally extensive compressional structures (Dostal et al., 1989, 1993; Strachan, 67 

2012a,b; Woodcock, 2012a-c; Wilson et al., 2017). This paper uses geochemical data on 417 68 

samples of mafic to intermediate-felsic igneous rocks (45-70% SiO2 contents on a volatile-free 69 

basis) from the problematic ~453 405 Ma interval in Ganderian, Avalonian and northeastern 70 

Laurentian domains to help clarify the complex tectono-magmatic history of that interval within 71 
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the constraints of palaeomagnetic, palaeontologic, structural, stratigraphic and sedimentologic 72 

data.  73 

 74 

2. Nomenclature 75 

 76 

Waldron et al. (2022) discussed at length nomenclatural issues surrounding the 77 

interchangeable usage in the literature of the Gander, Avalon and Meguma zones of Williams 78 

(1979) as terranes, Late Precambrian to Early Ordovician (Tremadocian) peri-Gondwanan or 79 

peri-Baltican domains (ie., terrane assemblages), and drifting post Tremadocian micro-80 

continents. These problems were exacerbated by the identification of terranes that have affinities 81 

with the Ganderian and Megumian domains alongside Avalonian domains in the British Isles 82 

(eg. Waldron et al., 2011, 2019a; Pothier et al., 2015; Schofield et al., 2016), whereas geological 83 

evidence suggests that the three domain components were part of the same drifting micro-84 

continent in late Early Ordovician (Floian) to Silurian times (Woodcock, 2012a; Waldron et al., 85 

2014). Another problem stems from profuse evidence (eg. Wilson et al., 2004, 2017; van Staal et 86 

al., 2009, 2016; Zagorevski et al., 2008, 2010, 2012; Wilson, 2017) suggesting that the bulk of 87 

Ganderian domains drifted as two separate segments due to the opening of a wide, intra-88 

Ganderian back-arc basin that evolved into oceanic lithosphere (the Tetagouche Exploits back-89 

arc basin of van Staal, 1994). 90 

In this paper, we use the terms Ganderian, Avalonian and Megumian domains in 91 

reference to groupings of geological provinces with strong similarities in their Late Precambrian 92 

to earliest Ordovician histories (ie., preceding the late Tremadocian Monian Penobscottian 93 

orogeny, sensu Waldron et al., 2022) along the Gondwanan and/or Baltican margins. 94 
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Furthermore, we inferred post Tremadocian 95 

micro-continents in line with the common usage of the suffixes or palaeo-96 

continents, such as Laurentia, Gondwana and Baltica. In an attempt to minimize deviations from 97 

historical usage while avoiding cumbersome or confusing nomenclature, we refer to the 98 

 s  of Ganderia (sensu van Staal et al., 2009, 2016; Zagorevski et al., 99 

2010; Wilson et al., 2017 N S . We also 100 

Avalon Brookville terrane 101 

assemblage  of Waldron et al., 2022, now part of northeastern North America) and East 102 

 (the Gander Lakesman terrane assemblage  of Waldron et al., 2022, now part of the 103 

British Isles) for drifting post Early Ordovician continental assemblages that are mainly 104 

composed of Avalonian domains. However, because East Avalonia is now pictured as having 105 

travelled with some terranes that correlate better with the Ganderian and Megumian, we refer to 106 

 107 

 108 

2. Tremadocian to Sandbian precursor setting 109 

 110 

Along the Laurentian margin of Iapetus, late Early to Middle Ordovician times were 111 

characterized by the accretion of terranes associated with the Taconic 2 (sensu van Staal et al., 112 

2007, 2009) and Grampian orogenies, which peaked circa 463 Ma in both the British Isles 113 

(Chew and Strachan, 2014) and northeastern North America (Whitehead et al., 1996) (Fig. 2). 114 

Based mostly on palaeomagnetic and palaeontologic data, terranes associated with the Ganderian 115 

and Avalonian domains were migrating northward on the same plate towards Laurentia and away 116 

from Gondwana in late Early to Middle Ordovician times, closing the Iapetus Ocean to the north, 117 

and enlarging the Rheic Ocean to the south (Nance et al., 2010, 2012; van Staal et al., 2012 and 118 
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references therein) (Fig. 3). At that time, Baltica (the Scandinavian craton) was separated from 119 

Laurentia by the Iapetus Ocean and from composite East Avalonia by the Tornquist Sea (Cocks 120 

and Torsvik, 2002; Torsvik and Rehnström, 2003) (Fig. 3). 121 

According to Zagorevski et al. (2008), accretion of North Ganderia to the Laurentian 122 

margin occurred circa 455 Ma through south-dipping subduction in the third and last tectonic 123 

phase attributed to the Taconic Orogeny (Figs. 2 and 4). The collision was preceded by the 124 

accretion of the peri-Laurentian Rowe belt (west of the area covered by our palaeo-continental 125 

reconstructions) to the North Ganderian assemblage circa 475 Ma (MacDonald et al., 2014; 126 

Karabinos et al., 2017; van Staal et al., 2021) and subduction of a Iapetan mid-oceanic ridge 127 

beneath North Ganderia circa 459 455 Ma (Rogers and van Staal, 2003; Zagorevski et al. 2010, 128 

2012; van Staal et al., 2016). Furthermore, the accretion of North Ganderia to the Laurentian 129 

margin was accompanied by the incomplete subduction of the Iapetan ridge beneath West and 130 

composite East Avalonia laterally along the same plate margin, which generated slab-window 131 

volcanism at ~454 Ma (Woodcock, 2012a, Jutras et al., 2020) (Figs. 2 and 4).  132 

 133 

3. Late Ordovician to early Silurian tectonic setting 134 

 135 

The shutdown of south-dipping Iapetan slab subduction is penecontemporaneous with the 136 

onset of southwest-dipping subduction of the Tornquist slab beneath the northeastern part of 137 

composite East Avalonia and the Late Ordovician convergence of the latter with Baltica 138 

(Pharaoh et al., 1993; Noble et al., 1993; Torsvik and Rehnström, 2003) (Fig. 5). Katian times 139 

also saw the development of north-dipping subduction zones beneath composite Laurentia, 140 

which produced the Brunswick subduction complex from consumption of the Tetagouche141 

Exploits back-arc slab (van Staal et al., 1990, 1998, 2009; van Staal, 1994; Wilson et al., 2004, 142 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



2015, 2017) while the Southern Uplands accretionary wedge was developing from consumption 143 

of the Iapetan slab beneath geological terranes now belonging to the British Isles and Greenland 144 

(McKerrow et al. 1977; Leggett et al., 1979; Ryan and Dewey, 1991; Strachan, 2012b; Hollocher 145 

et al., 2016; Chew and Strachan, 2014; McConnell et al., 2021) (Figs. 2 and 5). 146 

 In most palaeo-continental reconstructions (eg. van Staal et al. 2009; Piñán-Llamas and 147 

Hepburn, 2013; Tremblay and Pinet, 2016; Wilson et al., 2017), early Silurian convergence 148 

between composite Laurentia and West Avalonia occurred through northwest-dipping 149 

subduction of the Acadian Seaway slab (sensu van Staal et al.  2009), a remnant of oceanic crust 150 

that was trapped between them. The Silurian volcanic rocks of coastal Maine (Piñán-Llamas and 151 

Hepburn, 2013) and southern New Brunswick (Barr et al., 2002) are interpreted as products of 152 

this subduction zone. Hence, the Laurentian margin is pictured in some models as having been 153 

characterized by two closely spaced subduction zones dipping in the same direction in early 154 

Silurian times (van Staal et al. 2009; Tremblay and Pinet, 2016; Wilson et al., 2017). Based on 155 

the record of Silurian arc volcanic centres distributed along the southern margin of the British 156 

Isles, a north-dipping subduction zone had also developed beneath the East Avalonian Baltican 157 

assemblage by the early Silurian at the latest (Fig. 2), contributing to Rheic Ocean closure 158 

(Woodcock et al., 2007).  159 

 160 

4. Katian to earliest Emsian (~453 405 Ma) magmatic record in northeastern North 161 
America and the British Isles  162 

 163 

In the following sub-sections, geochemical data on igneous rocks from the ~453 405 Ma 164 

interval that followed the Taconic and Grampian orogenies and preceded the Acadian Orogeny 165 

are subdivided into four sectors: 166 
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- (1) Mafic to intermediate-felsic rocks (45-70% SiO2 contents on a volatile-free basis) 167 

located in the former micro-continent of South Ganderia to the south of the Dog Bay 168 

Line, which separates the two main Ganderian domain components in northeastern 169 

North America (Fig. 1). Occurrences are known from southern New Brunswick and 170 

coastal Maine (localities a-d in Fig. 1; Seaman et al., 1999; Barr et al., 2002; van 171 

Wagoner et al., 2002; Piñán-Llamas and Hepburn, 2013). These rocks have been 172 

associated with closure of the Acadian Seaway (Piñán-Llamas and Hepburn, 2013). 173 

- (2) Mafic to intermediate-felsic rocks located to the north of the Dog Bay Line along 174 

the former margin of composite Laurentia (including the former micro-continent of 175 

North Ganderia) in northeastern North America (localities e-p in Fig. 1; Murphy, 176 

1989; David and Gariépy, 1990; Dostal et al., 1993, 2016, 2021, 2022; Whalen et al., 177 

1996, 2006; Giggie, 1999; Wilson et al., 2005, 2008; Walker, 2010; Wilson, 2017). 178 

These occurrences have been associated with closure of the Tetagouche Exploits 179 

back-arc basin (van Staal, 1994; van Staal et al., 1998, 2009; Wilson et al., 2008, 180 

2017). 181 

- (3) Mafic to intermediate-felsic rocks located to the north of the Solway Line (Fig. 1) 182 

along the former margin of Laurentia in northwestern sectors of the British Isles 183 

(localities r-t in Fig. 1; Tindle and Pearce, 1981; Badenszki et al., 2019; Murphy et 184 

al., 2019; Archibald and Murphy, 2021). The latter authors associated these 185 

occurrences with Iapetus Ocean closure.  186 

- (4) Mafic to intermediate-felsic rocks located in the former micro-continents of West 187 

Avalonia and composite East Avalonia to the south of the Solway Line, including 188 

occurrences from northeast England that have been associated with closure of the 189 
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Tornquist Sea (Thor Suture) (locality y in Fig. 1; Pharaoh et al., 1993), and 190 

occurrences from southeast Newfoundland (locality q in Fig. 1; Greenough, 1984, 191 

Greenough et al., 1993) and the southern end of the British Isles (localities u-x and y 192 

in Fig. 1; van de Kamp, 1969; Thorpe et al., 1989; Sloan and Bennett, 1990; Pharaoh 193 

et al., 1991) that have been associated with Rheic Ocean closure (Woodcock et al., 194 

2007; Woodcock, 2012b).  195 

 196 

 Within those sectors, data from the literature on Katian to earliest Emsian igneous rocks 197 

of mafic to intermediate-felsic compositions were selected when including the right combination 198 

of trace elements to be plotted on at least one of four discrimination diagrams used in this paper: 199 

(1) the Hf/3 vs Th vs Ta diagram of Wood (1980) (Figs. 6a 11a), which is one of the most 200 

widely used and understood tectonic discrimination diagrams in the literature, and which is 201 

herein used for mafic to intermediate rocks; (2) the Zr/Y vs Th/Yb diagram of Ross and Bédard 202 

(2009) (Figs. 6b 11b), from which tholeiites are perhaps best separated from calc-alkaline 203 

subduction-related magmas, and which is herein used for mafic to intermediate-felsic rocks; and 204 

(3) the Nb+Y vs Nb/Y (Figs. 6c 11c) and (4) Ta+Yb vs La/Yb (Figs. 6d 11d) diagrams of 205 

Whalen and Hildebrand (2019), which reflect recent advances in the design of discrimination 206 

diagrams to differentiate arc magmas from slab failure and A-type magmas, and which are herein 207 

used for intermediate to intermediate-felsic rocks with an aluminium saturation index [molar 208 

Al2O3/(CaO + Na2O + K2O)] lower than 1.1, and SiO2 contents ranging between 55 and 70 wt.% 209 

on a volatile-free basis. Data points on Figures 6 to 11 represent chemical analyses from 210 

individual samples (data compiled in Appendix A). 211 
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Because the lithospheric mantle components of the Appalachian Caledonian have all 212 

experienced subduction-related metasomatism at some point in late Precambrian to early 213 

Palaeozoic times, Katian to earliest Emsian igneous rocks from all above-mentioned localities 214 

have trace element ratios that are overall characteristic of calc-alkaline arc environments (Figs. 215 

6a 11a and 6b 11b). However, an extensional within-plate environment for these rocks has been 216 

inferred in many instances based on the bimodal composition of some suites and a tendency 217 

towards high contents in high-field-strength elements (HFSEs) paired with dominantly tholeiitic 218 

Si vs Fe/Mg trends (Dostal et al., 1989, 2016; Seaman et al., 1999; van Wagoner et al., 2002; 219 

Piñán-Llamas and Hepburn, 2013). 220 

To further constrain the plate-margin tectono-magmatic environments, Whalen and 221 

Hildebrand (2019) developed diagrams that refined our means to differentiate between hydrous 222 

arc or slab failure magmatism and anhydrous extensional magmatism (A-type) with the use of 223 

immobile trace element contents and ratios (Figs. 6c,d 11c,d). Diagrams using Nb/Y ratios can 224 

also be used to subdivide the A-type range by allowing a differentiation to be made between the 225 

A1-type igneous rocks of intra-plate environments and the A2-type igneous rocks of plate 226 

margin environments (sensu Eby, 1992). 227 

 228 

4.1. South Ganderian terranes  229 

 230 

Barr et al. (2002) analysed intrusive and extrusive rocks from the South Ganderian 231 

Kingston terrane of southern New Brunswick (locality d on Fig. 1; Table 1), reporting U-Pb 232 

zircon ages ranging between 442 ± 6 and 435 ± 1.5 Ma (the younger date is from Doig et al., 233 

1990). Piñán-Llamas and Hepburn (2013) studied other volcanic rocks in coastal Maine (the 234 

Dennys Formation; locality b on Fig. 1; Table 1) that are possibly coeval (ie., Llandovery to 235 
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Wenlock) based on biostratigraphic constraints, whereas volcanic rocks of the overlying 236 

Edmunds, Leighton and Eastport formations are considered to range from the Ludlow to the 237 

Pridoli. However, within the current framework of the International Commission on Stratigraphy 238 

(Melchin et al., 2020), studies by Miller and Fyffe (2002), van Wagoner et al (2002), Churchill-239 

Dickson (2004), and Wilson et al. (2008) have shown significant discrepancies between 240 

radiometric ages and assigned Siluro-Devonian biostratigraphic ages in the region. Because 241 

stratigraphic subdivisions in this paper are mainly based on radiometric ages, the Dennys, 242 

Edmunds, Leighton and Eastport formations are here considered as undivided Silurian rocks. 243 

The Cranberry Island volcanic series of coastal Maine (locality a on Fig. 1; Table 1) and 244 

the Passamaquoddy Bay volcanic sequence of southern New Brunswick (locality c on Fig. 1; 245 

Table 1) respectively yielded U-Pb zircon dates of 424 ± 1 Ma (Ludlow; Seaman et al., 1995) 246 

and 423 ± 1 Ma (Pridoli; van Wagoner et al., 2001). Although Seaman et al. (1999) and van 247 

Wagoner et al. (2002) referred to both successions as bimodal due to the presence of a SiO2 gap 248 

within the intermediate range, the two successions include andesites and dacites.  249 

 250 

4.1.2. Geochemistry 251 

The Pridoli Passamaquoddy Bay volcanic sequence (~423 Ma) of southern New 252 

Brunswick clearly plots in the A2-type range determined by Whalen and Hildebrand (2019) (Fig. 253 

6c,d). The limited amount of geochemical data from older Silurian andesites and dacites in South 254 

Ganderia does not allow a firm determination of the tectonic environment to be made, but 255 

although they straddle the three ranges, these volcanic rocks dominantly plot into the arc range 256 

(Fig. 6c,d). Previous authors concluded that the ~424 Ma Cranberry Island volcanic series and 257 

the undated Eastport Formation of coastal Maine have affinities with the within-plate 258 
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Passamaquoddy Bay volcanic sequence of southern New Brunswick (Seaman et al., 1999; van 259 

Wagoner et al., 2002; Piñán-Llamas et al., 2013). However, their trace element contents have 260 

more in common with older Silurian igneous rocks of the region (the Dennys, Edmunds and 261 

Leighton formations, as well as the Kingston Group volcanic rocks and associated plutons) that 262 

have been interpreted as arc related (Barr et al., 2002; Piñán-Llamas and Hepburn, 2013). Hence, 263 

the onset of arc volcanism in South Ganderian terranes of coastal Maine and southern New 264 

Brunswick may have occurred near the beginning of the Silurian based on a 442 ± 6 Ma U-Pb 265 

zircon age obtained from a dacitic tuff in the Kingston terrane of southern New Brunswick (Barr 266 

et al., 2002), and persisted until the end of the Ludlow Epoch based on the 424 ± 1 Ma U-Pb 267 

zircon age obtained by Seaman et al. (1995) in the Cranberry Island volcanic series of coastal 268 

Maine. 269 

 270 

4.2. Laurentian margin and North Ganderian terranes in northeastern North America 271 

 272 

4.2.1. Katian to Pridoli interval (~453 420 Ma) 273 

The record of Late Ordovician magmatism along the composite Laurentian margin in 274 

northeastern North America is very scarce, being limited to a foliated granodiorite sheet in 275 

Newfoundland from which a 445.8 ± 0.6 Ma U-Pb zircon date was obtained (Brem et al., 2007), 276 

but which was not analyzed for its major and trace element contents. Furthermore, the Duncans 277 

Brook Formation of northern New Brunswick includes basalt flows intercalated with 278 

sedimentary rocks that bear detrital zircons as young as 444 ± 6 Ma (Wilson et al., 2015), 279 

suggesting that it is either uppermost Ordovician or early Llandovery. 280 

Apart from possibly the Duncans Brook Formation of northern New Brunswick, the 281 

oldest Silurian igneous rock record along the composite Laurentian margin in northeastern North 282 
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America is from the granitic Glover Island and granodioritic Burlington plutons of northwest 283 

Newfoundland, which are both dated at 440 ± 2 Ma (early Llandovery) (Cawood and Dunning, 284 

1993; Cawood et al., 1996; Whalen et al., 2006) (locality l on Fig. 1; Table 1). Other Silurian 285 

igneous rocks in northwest Newfoundland include the Boogie Lake and Main Gut complexes at 286 

respectively 435 ± 6 and 431 ± 2 Ma (Dunning et al., 1990), the Rainy Lake and Silver Pond 287 

complexes at respectively 435 ± 1 and 431.6 ± 4 Ma (Whalen et al., 2006), the Puddle Pond 288 

complex at 432.4 ± 1 (Lissenberg et al., 2005), and the Taylor Brook complex at 430.5 ± 2 Ma 289 

(Heaman et al., 2002) (all at locality m on Fig. 1; Table 1), as well as the Topsails and 290 

Springdale volcanic groups (both at locality o on Fig. 1; Table 1) at 429 ± 4 Ma (Whalen et al., 291 

1987), and the Topsails intrusive suite (locality n on Fig. 1; Table 1) at 427 ± 1 Ma (Whalen et 292 

al., 2006) and 425 ± 4 Ma (van Staal et al., 2014). Moreover, slightly younger Silurian igneous 293 

rocks are found farther to the northeast, just to the north of the Dog Bay Line (locality p on Fig. 294 

1), with U-Pb zircon ages ranging from 424 ± 2 Ma in the Mount Peyton Batholith to 421.2 ± 0.6 295 

Ma in the Brimstone Head Formation of the Botwood Group (Dunning et al., 1990; Hamilton 296 

and Kerr, 2016) (Table 1). 297 

Silurian volcanic rocks are also found along the composite Laurentian margin (including 298 

North Ganderian terranes) in southeastern Quebec (the Lac Raymond and Pointe aux Trembles 299 

formations; David and Gariépy, 1990) and northwest New Brunswick (Weir Formation; Wilson 300 

et al., 2008) (localities g and j respectively on Fig. 1; Table 1). Although volcanic successions 301 

from both localities are intercalated with or overlain by marine sedimentary rocks with 302 

brachiopod, conodont and ostracod assemblages assigned to the late Llandovery (Noble, 1976; 303 

Nowlan, 1983; David and Gariépy, 1990; Wilson et al., 2008), a U-Pb date of 429.2 ± 0.5 Ma 304 

was obtained from a dacitic tuff of the Weir Formation (Wilson et al., 2008), which is late 305 
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Wenlock according to the current Silurian subdivisions of the International Commission on 306 

Stratigraphy (Melchin et al., 2020). As biostratigraphic constraints imply that volcanic rocks of 307 

the Lac Raymond and Pointe aux Trembles formations are time-equivalent to those of the Weir 308 

Formation, they were possibly deposited near 429 Ma and are herein included within the 309 

Llandovery to Wenlock (~444 428 Ma) bracket. These rocks are in part equivalent to the 310 

Ristigouche volcanic rocks in the Gaspé Peninsula of southeastern Quebec (locality k on Fig. 1; 311 

Table 1) based on biostratigraphic constraints (Bourque and Lachambre, 1980; Bourque et al., 312 

2000), but the latter succession is basaltic and does not include intermediate to intermediate-313 

felsic rocks (Doyon and Dalpé, 1993).  314 

Following a volcanic hiatus of a few million years and a period of uplift and erosion 315 

(Salinic B unconformity of Wilson et al., 2017), voluminous volcanism was recorded in the 316 

Pridoli Dickie Cove Group of northwest New Brunswick (Dostal et al., 2016, 2021, 2022) 317 

(locality h on Fig. 1; Table 1). This group yielded U-Pb zircon ages of 422.3 ± 0.3 Ma in the 318 

basal Bryant Point Formation, and of 420.8 ± 0.4 and 419.7 ± 0.3 Ma in respectively the lower 319 

and upper parts of the Benjamin Formation at the top of the succession (Wilson and Kamo, 2008, 320 

2012). The two volcanic formations are separated by coarse volcaniclastic conglomerate of the 321 

New Mills Formation. This group is in part equivalent to the Siluro-Devonian Tobique Group of 322 

central-west New Brunswick (locality e on Fig. 1; Table 1), in which stratigraphic relationships 323 

are less well constrained (Wilson, 2017).  324 

 325 

4.2.1.1. Geochemistry.   North of the Dog Bay Line along the composite Laurentian margin of 326 

northeastern North America, available data on intermediate to intermediate-felsic rocks of the 327 

Llandovery to Wenlock interval (~444 428 Ma) dominantly plot within the slab failure range in 328 
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the Nb+Y vs Nb/Y and Ta+Yb vs La/Yb diagrams of Whalen and Hildebrand (2019; Fig. 7c,d), 329 

including those from the Lac Raymond, Pointe aux Trembles and Weir formations, which were 330 

previously attributed to arc volcanism (David and Gariépy, 1990; Wilson et al., 2008). In 331 

contrast, volcanic rocks from the late Pridoli (the ~421 420 Ma Benjamin Formation of the 332 

Dickie Cove Group in northwest New Brunswick) plot entirely within the A2-type range. These 333 

two clearly differentiated populations are somewhat linked by rocks that are dated as Ludlow 334 

(the ~427 424 Ma Topsails intrusive suite of northwest Newfoundland) to early Pridoli (the 335 

~423 422 Ma Bryant Point Formation of the Dickie Cove Group). Based on limited age 336 

constraints, the Llandovery to Ludlow interval records a gradual increase in HFSE contents 337 

accompanied by a gradual decrease in Nb/Y and La/Yb ratios, whereas the Pridoli interval 338 

mostly shows a pronounced increase in HFSE contents (Fig. 7c,d).  339 

  340 

4.2.2.  Lochkovian to earliest Emsian interval (~419 405 Ma) 341 

 342 

Early Devonian igneous rocks in northeastern North America include a series of felsic 343 

intrusions in the Miramichi Highlands (Brunswick subduction complex of the North Ganderian 344 

assemblage) in northern New Brunswick (locality f on Fig. 1; Table 1), which range between 345 

~418 and ~402 Ma (Whalen et al., 1996), as well as coeval volcanic rocks of the Dalhousie 346 

Group, which straddle the New Brunswick / Quebec border (locality i on Fig. 1; Table 1), and 347 

which range between 417.5 ± 0.4 Ma (Wilson et al., 2017) and 407.4 ± 0.8 Ma (Wilson et al., 348 

2004). The latter group disconformably overlies the Silurian Ristigouche volcanics and Dickie 349 

Cove Group (Doyon and Dalpé, 1993; Bourque et al., 2000; Wilson, 2017). Based on 350 

stratigraphic constraints, the Baldwin and Lyall volcanic rocks in the Gaspé Peninsula of eastern 351 
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Quebec (locality k on Fig. 1; Table 1) are possibly time-equivalent to volcanic rocks of the 352 

Dalhousie Group (Doyon and Dalpé, 1993).  353 

Early Devonian plutons also occur in the Fogo Island Batholith of northern 354 

Newfoundland, with a monzogranite yielding a 408 ± 0.8 Ma U-Pb zircon age, and a quartz 355 

diorite yielding a 410 ± 2 Ma U-Pb titanite age and a 420 ± 2 Ma U-Pb zircon age (Aydin, 1995). 356 

We consider the significantly older zircon population as probably inherited.  357 

 358 

4.2.2.1. Geochemistry.   Although the Lower Devonian volcanic rocks of northern New 359 

Brunswick and southeastern Quebec are traditionally linked to the same post Taconic overstep 360 

succession as the Pridoli Dickie Cove Group (the Matapedia cover sequence of Fyffe and 361 

Fricker, 1987), they differ from the latter unit by the lack of a gap in the intermediate range 362 

(sensu Daly, 1925) when the succession is taken as a whole (Wilson, 2017). They also show 363 

distinct trace element contents that straddle all three ranges in the Nb+Y vs Nb/Y and Ta+Nb vs 364 

La/Yb diagrams of Whalen and Hildebrand (2019) (Fig. 8c,d), but that are skewed towards the 365 

arc and slab failure ranges, whereas data from the Dickie Cove Group are skewed towards the 366 

A2-type range (Fig. 7c,d). Moreover, contrary to the Silurian successions, an overall decrease in 367 

HFSE contents is observed with time (Fig. 8c,d). Hence, a change in tectono-magmatic setting 368 

must have occurred in association with the disconformity at the Siluro-Devonian boundary in the 369 

region. 370 

 In northern Newfoundland, available data on Lower Devonian igneous rocks are 371 

constrained to the Pragian, and although they are compatible with age-equivalent rocks in 372 

northern New Brunswick (Figs. 8 and 9), they show a tendency for lower Nb/Y and therefore a 373 

stronger affinity with typical arc environments (Fig. 9c).  374 
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 375 

4.3. Laurentian margin in the British Isles 376 

 377 

Following the Middle Ordovician Grampian Orogeny, evidence from structures and syn-378 

tectonic sedimentary rocks reviewed by Strachan (2012b), Stone et al. (2012) and McConnell et 379 

al. (2021) indicates that a northwest-dipping subduction zone developed beneath Laurentia, 380 

although the Late Ordovician magmatic record for this subduction is scarce because of 381 

subsequent burial beneath younger rocks covering the Midland Valley terrane of Scotland and its 382 

extension in Ireland. Badenszki et al. (2019) obtained a 453.6 ± 8 Ma U-Pb zircon age 383 

(Sandbian/Katian boundary) from a metadioritic xenolith within upper Palaeozoic intrusive rocks 384 

of the Midland Valley terrane (locality s on Fig. 1; Table 1).  385 

In northwest Ireland, the polymodal Donegal composite batholith (locality r on Fig. 1; 386 

Table 1) yielded U-Pb zircon ages ranging from 428 ± 4 to ~424 Ma (latest Wenlock to Ludlow) 387 

in the Ardara Pluton and in an enclave within the Thorr Pluton, but the composite batholith is 388 

volumetrically dominated by Early Devonian plutons with U-Pb zircon ages ranging between 389 

420 ± 3 and ~400 Ma, and clustering between ~418 and 411 Ma (Lochkovian) (Archibald et al., 390 

2021).  391 

An appinite and lamprophyre suite near the Donegal composite batholith yielded a U-Pb 392 

zircon age of 437 ± 5 Ma (Kirkland et al., 2013), 40Ar/39Ar hornblende ages ranging from 434.2 393 

± 2.1 to 433.7 ± 5.5 Ma (Murphy et al., 2019), and U-Pb titanite ages ranging from 431 ± 6 to 394 

419 ± 5 Ma (Archibald et al., 2021) (late Llandovery to early Lochkovian). However, these rocks 395 

have an aluminium saturation index greater than 1.1 and therefore cannot be used in the 396 

discrimination diagrams of Whalen and Hildebrand (2019). Samples from this suite plotted in 397 
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Fig. 10a,b are from rocks ranging from 434.2 ± 2.1 to 431 ± 6 Ma (Murphy et al., 2019) (late 398 

Llandovery to Wenlock).  399 

In terms of Early Devonian occurrences, an Rb/Sr age of 408 ± 1.5 Ma (Pragian) was 400 

obtained by Piper (2007) for the Loch Doon pluton in the Southern Uplands of Scotland (locality 401 

t on Fig. 1; Table 1), and U-Pb zircon dates of 410 ± 1 and 406 ± 2 Ma were reported by Stone et 402 

al. (2012) for the same pluton. Badenszki et al. (2019) obtained a weighted average of 415 ± 3 403 

Ma (Lochkovian) for U-Pb zircon ages obtained from metadioritic xenoliths within Permo404 

s on Fig. 1; Table 1).  405 

 406 

4.4.2. Geochemistry 407 

The only retrieved sample from Katian to Hirnantian (~553-444 Ma) igneous rocks along 408 

the Laurentian margin in the British Isles plots into the arc range defined by Whalen and 409 

Hildebrand (2019), whereas mid Silurian to Early Devonian igneous rocks plot almost 410 

exclusively within the slab failure range (Fig. 10c,d). However, the Pragian Loch Doon pluton 411 

(data from Tindle and Pearce, 1981) plots notably closer to the A-type range than the 412 

Lochkovian xenoliths as well as the mid Silurian to Lochkovian Donegal plutons, and the 413 

associated increase in HFSE contents is paired with a decrease in Nb/Y and La/Yb ratios. 414 

 415 

4.5. Terranes associated with the former micro-continents of West and composite East Avalonia 416 

 417 

Late Ordovician to earliest Silurian plutonic and volcanic rocks intercepted by wells in 418 

northeast England to the southeast of the Solway Line (locality y on Fig. 1; Table 1) have been 419 

interpreted as related to subduction of the Tornquist slab beneath Avalonia (Pharaoh et al., 420 

1993). These rocks yielded U-Pb zircon dates of 452 +8 5 Ma (Pidgeon and Aftalion, 1978), as 421 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



well as 449 ± 13 Ma, 457 ± 20 Ma, and 442 ± 3 Ma (Noble et al., 1993). They are thought to be 422 

related to calc-alkaline rocks of approximately the same age in the Brabant Massif of Belgium 423 

(locality z on Fig. 1; Table 1) (André et al., 1986). 424 

 At the southernmost end of the British Isles, Silurian volcanic rocks are distributed along 425 

an east-west trend (Woodcock et al, 2007; Woodcock, 2012b). They include the Llandovery 426 

Skomer Volcanic Group of south Wales (Thorpe et al., 1989) (locality w on Fig. 1; Table 1), the 427 

Llandovery to Wenlock Tortworth volcanics of southern England (van de Kamp, 1969; Pharaoh 428 

et al., 1991) (locality x on Fig. 1; Table 1), and the late Wenlock Dunquin Group of southern 429 

Ireland (Sloan and Bennett, 1990) (locality u on Fig. 1; Table 1), with ages that are based on 430 

biostratigraphic constraints.  431 

 Also within the composite East Avalonian assemblage, southeast of the Solway Line, 432 

intrusive units in the northern part of the Leinster Batholith of southeast Ireland yielded U-Pb 433 

zircon ages ranging from 417.4 ± 1.7 to 404.9 ± 2.6 Ma (Fritschle et al., 2018a) (locality v on 434 

Fig. 1; Table 1). However, trace element geochemical data that would be relevant to this study 435 

are only available for southern units of the batholith (Sweetman, 1987) that were long considered 436 

to be Early Devonian, but from which U-Pb zircon dates of 462.0 ± 2.7 Ma and 460.5 ± 3.2 Ma 437 

(Middle Ordovician) were subsequently obtained (Fritschle et al., 2018b). Furthermore, mafic to 438 

the Avalon Peninsula of Newfoundland (West Avalonia) 439 

(locality q on Fig. 1; Table 1) yielded a U-Pb baddeleyite date of 441 ± 2 Ma (Greenough et al., 440 

1993).  441 

 442 

 443 

 444 
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4.5.2. Geochemistry 445 

Late Ordovician to earliest Silurian intermediate to intermediate-felsic rocks along the 446 

inferred Thor Suture to the northeast of the Midland Microcraton (locality y on Fig. 1; Table 1) 447 

straddle the arc and slab failure ranges (Fig. 11c,d). Along the inferred Rheic Suture (sensu 448 

Woodcock et al., 2007, and Woodcock, 2012b) at the southern edge of composite East Avalonia, 449 

Silurian andesites and dacites mostly plot into the arc range (Fig. 11c,d), which is consistent with 450 

the conclusions of previous workers (van de Kamp, 1969; Thorpe et al., 1989; Sloan and 451 

Bennett, 1990; Pha452 

(Greenough, 1984) are constrained within the A2-type range (Fig. 11c,d). 453 

 454 

5. Discussion 455 

 456 

5.1. General chronological trends in the geochemical signature of slab-failure-related 457 
magmatism 458 

 459 

Along the composite Laurentian margin in northeastern North America and the British 460 

Isles, a trend towards increasing HFSE contents as well as decreasing Nb/Y and La/Yb ratios is 461 

observed with time in igneous rocks associated with slab failure (Figs. 6c,d and 11c,d). 462 

Hildebrand and Whalen (2017) and Whalen and Hildebrand (2019) interpreted the rise in Nb/Y 463 

and LREE/HREE ratios from arc to slab failure magmatism as being related to partial melting of 464 

the Nb-enriched metabasaltic/gabbroic upper portion of the failing slab, leaving HREE-rich 465 

residual garnet in the eclogitic residue. This would be especially true in the early stages of slab 466 

failure, when the failing slab is still close to the base of the lithosphere. Hence, although slab-467 

failure-related magmatic systems will tend to develop high Nb/Y and La/Yb ratios, the observed 468 
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decrease of these ratios with time could reflect a gradually fading contribution of the sinking slab 469 

at the source, whereas the observed increase in HFSE contents (Nb+Y and Ta+Yb) suggests that 470 

a gradual dehydration of the mantle source occurs in such setting due to a lack of new water 471 

input from subduction. 472 

  473 

5.2. Katian to Hirnantian interval (~453 444 Ma) 474 
 475 
 476 

The Katian to Hirnantian igneous rock record is very scarce in the Appalachian477 

Caledonian Belt, and the subduction zones depicted in Fig. 5 are mainly inferred from structures 478 

and metamorphic features (eg. Woodcock, 2012a; van Staal et al., 1998, 2008, 2012, 2016; 479 

Wilson et al., 2017; and references therein) as well as evidence for convergence from 480 

palaeomagnetic (Johnson and Van der Voo, 1985, 1990; Mac Niocaill, C., 2000; Cocks and 481 

Torsvik, 2002; Smethurst and McEnroe, 2003; Torsvik and Rehnström, 2003; Thompson et al., 482 

2010, 2022) and palaeontologic data (McKerrow et al., 1977; Ziegler et al., 1977; Landing and 483 

Murphy, 1991; Landing, 1996, 2007: Landing et al., 2008, 2022). However, where recorded 484 

along the composite Laurentian margin and the inferred Thor Suture of composite East Avalonia, 485 

those igneous rocks are geochemically consistent with an arc environment (Figs. 10 and 11). 486 

According to Pharaoh et al. (1995) and Torsvik and Rehnström (2003), Baltica and composite 487 

East Avalonia had already collided by early Silurian times in association with the poorly 488 

recorded Shelveian tectonic event in northeast England (Woodcock, 2012b) (Figs. 2 and 12, 489 

Table 2). 490 

 491 

 492 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



5.3. The Llandovery to Ludlow interval (~444 424 Ma) 493 

 494 

5.3.1. Composite Laurentian margin north of the Dog Bay Line in northeastern North America 495 

A clear slab-failure signature in Llandovery to Wenlock (~444 428 Ma) igneous rocks 496 

within North Ganderian and southeasternmost Laurentian terranes in northeastern North America 497 

(Fig. 8c,d) suggests that, although final closure of the Tetagouche Exploits back-arc basin was 498 

previously associated with the Wenlock to Ludlow Salinic B unconformity (Wilson et al., 2017), 499 

it most likely occurred in association with the latest Ordovician to early Llandovery Salinic A 500 

deformation event (Figs. 2 and Fig. 12), which is characterized by an unconformity separating 501 

the Ordovician Brunswick subduction complex from overlying Silurian sedimentary and 502 

volcanic rocks (Wilson and Kamo, 2012). A similar timing for the closure is suggested by 503 

reports of Laurentian detrital zircons in the Llandovery Hayes Brook Formation (Dokken, 2017) 504 

to the south of the Dog Bay Line. Hence, closure of the Tetagouche Exploits basin must have 505 

been constrained within the ~453 440 Ma interval, for which a record of arc volcanic rocks is 506 

currently lacking. It should be noted that the Tetagouche Exploits slab was composed of young 507 

oceanic crust that was unlikely to subduct steeply and produce abundant arc volcanism.  508 

 509 

5.3.2. Laurentian margin in the British Isles 510 

Based on available data from the Donegal composite batholith of northwest Ireland, the 511 

Iapetan slab had failed beneath Laurentian rocks of the British Isles by ~428 Ma (Archibald and 512 

Murphy, 2021; Archibald et al., 2021, 2022) (Fig. 10c,d). This event was most likely linked to 513 

the circa 430 Ma culmination of the Scandian Orogeny, which was the result of the collision 514 

between Laurentia and Baltica, and which affected rocks of Scotland, east Greenland and 515 
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Scandinavia (Strachan, 2012b; Hollocher et al., 2016; Chew and Strachan, 2014; Bender et al., 516 

2019; Jakob et al., 2022) (Fig. 13).  517 

 518 

5.3.3. South Ganderia 519 

Based on data from the Kingston terrane of southern New Brunswick (Fig. 6c,d), 520 

northwest-dipping subduction beneath South Ganderian terranes was already ongoing by ~442 521 

Ma (earliest Llandovery) (Barr et al., 2002), and two closely spaced northwest dipping 522 

subduction zones may therefore have coexisted for a while along the two parts of Ganderia 523 

(sensu van Staal et al., 2009, Tremblay and Pinet, 2016, and Wilson et al., 2017). Based on 524 

radiometric and stratigraphic constraints (Wilson et al., 2017), it is also possible that the onset of 525 

Acadian Seaway slab subduction accompanied the Salinic A deformation and final closure of the 526 

Tetagouche Exploits back-arc basin (Figs. 2 and 12). The tendency for relatively high Nb/Y and 527 

Nb+Y in these inferred Silurian arc igneous rocks in South Ganderian terranes suggests shallow 528 

subduction, which can result in poorly hydrated arc magmatism as much of the well-hydrated 529 

uppermost part of the subducting slab is left behind in the accretionary prism in such settings.  530 

 531 

5.3.4. West and composite East Avalonia 532 

Inferred subduction of the Rheic Ocean slab beneath composite East Avalonia during the 533 

Silurian (Woodcock et al., 2007; Woodcock, 2012b) is supported by the geochemistry of Silurian 534 

igneous rocks distributed along an east-west trend at the south end of the British Isles (Fig. 535 

11c,d). Based on the available record, onset of this subduction occurred near the beginning of the 536 

Silurian (Figs. 2 and 12537 

Newfoundland (Greenough et al., 1993), which show geochemical evidence for anhydrous 538 
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volcanism (Fig. 11c), are pictured as probable products of back-arc extension or transtension. 539 

Associated arc volcanic rocks in West Avalonia are possibly buried beneath continental shelf 540 

strata along the northwest Atlantic margin.  541 

 542 

5.4. The Pridoli interval (~423 420 Ma) 543 

 544 

5.4.1. Ganderian and West Avalonian terranes 545 

As no coeval deformation is recorded in West Avalonia, which had not yet accreted with 546 

composite Laurentia, no continental collision is inferred to have caused the minor pre Pridoli 547 

orogenic phase responsible for the Salinic B unconformity (sensu Wilson et al., 2017) in 548 

Ganderian terranes, which was most likely caused by a shallowing of Acadian Seaway slab 549 

subduction in Wenlock to Ludlow times (Figs. 2 and 13). To explain the rapid switch from arc 550 

volcanism in the ~424 Ma Cranberry Island volcanic series to anhydrous, extensional volcanism 551 

in the ~423 Ma Passamaquoddy Bay volcanic sequence on South Ganderian terranes (Fig. 6c,d), 552 

we propose that the warm and slowly sinking Tetagouche Exploits slab may have interfered 553 

with the neighbouring shallow subduction of the Acadian Seaway slab, causing chain failure at 554 

depth (Fig. 14, cross-section A-B, ~423 Ma). Because the second tear would have occurred deep 555 

below the asthenosphere-lithosphere boundary, the associated volcanism would not have 556 

developed a clear slab failure signature, but it would have generated sufficient stress release to 557 

cause significant extensional magmatism at the level of the composite Laurentian margin (Figs. 2 558 

and 14).  559 

Failure of the Acadian Seaway slab at the onset of the Pridoli is consistent with the 560 

contemporaneous record of a very rapid and short-lived sea regression in the Silurian Arisaig 561 

Group on West Avalonia (Boucot et al., 1974) (Fig. 2, and Fig. 14, cross-section C-D), which 562 
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had drifted very close to the composite Laurentian margin by then based on palaeomagnetic 563 

studies (Cocks and Torsvik, 2002) and detrital zircon data (Murphy et al., 2004). The Arisaig 564 

Group displays an undisturbed marine succession that spans the entire Silurian with the 565 

exception of a thin interval of continental red beds in the upper member of the Moydart 566 

Formation (Fig. 15A), which were deposited near the Ludlow Pridoli boundary (Boucot et al., 567 

1974). Within a ~2 m interval, the succession conformably passes upward from green mudrock 568 

with coquina lenses and hummocky cross-stratified siltstone intervals deposited below the mean 569 

fairweather wave base (late Ludlow Lower Member of the Moydart Formation) to mottled red 570 

mudrock with pedogenic calcretes deposited in the supratidal zone (undated Upper Member of 571 

the Moydart Formation), the two facies being separated by rhythmic alternations of red mudrock 572 

and green biosparudite presumably deposited in the intertidal zone (Fig. 15b,c). Considering the 573 

high sedimentation rate of tidal rhythmites, this section seems to have experienced several metres 574 

of base-level lowering in a matter of months. Such rapid regression would be difficult to explain 575 

without invoking a sudden event of tectonic relaxation, which could be related to retrogressive 576 

movement of the remnant Acadian Seaway oceanic lithosphere following failure, as the latter 577 

was still attached to West Avalonia (Fig. 14). Shallow marine sedimentation resumed a few 578 

metres higher in the succession from a recrudescence of basin subsidence recorded in the Pridoli 579 

Stonehouse Formation (Waldron et al., 1996) (Figs. 2 and 15c), which is also consistent with the 580 

short-lived nature of slab-failure-related uplift.  581 

On the Ganderian side, post Salinic relaxation associated with the inferred failure of the 582 

Acadian Seaway slab seemingly migrated landward during the Pridoli, generating profuse 583 

volcanism recorded in the ~422 Ma Bryant Point Formation at the base of the Dickie Cove 584 

Group, which still marginally plots within the arc failure range, but which shows a significant 585 
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offset towards the A-type ranges (Fig. 7c,d). Because the significant increase in Nb+Y does not 586 

show a corresponding decrease in Nb/Y, we attribute the former to the onset of A-type 587 

extensional tectonics rather than to a fading contribution of the sinking Tetagouche Exploits 588 

slab; the latter having been most likely too deep by then to be part of the magmatic source, as 589 

both numerical models and the geological record suggest that slab-failure-related magmatism is a 590 

short-lived event of a few million years (eg. Zhu et al., 2015; Freeburn et al., 2017; Kant et al., 591 

2018; Dostal and Jutras, 2021). We therefore attribute the relatively low HFSE contents of the 592 

Bryant Point Formation to inheritance from a previous history of hydrated arc volcanism at the 593 

base of the sub-continental lithospheric mantle (SCLM), and we associate this unit to the onset of 594 

an increasingly anhydrous extensional tectonic regime during the Pridoli in North Ganderian 595 

terranes in relation to failure of the Acadian Seaway slab at depth (Fig. 14, cross-section A-B, 596 

~422 Ma). 597 

The possibility of two distinct Silurian tectono-magmatic events in the area is supported 598 

by the identification of a large time gap separating the original Llandovery to early Ludlow pulse 599 

of slab-failure-related volcanic rocks (Lac Raymond, Pointe aux Trembles, and Weir formations) 600 

from bimodal magmatism associated with the Pridoli Bryant Point Formation; the latter 601 

corresponding to a significant magmatic pulse that left a ~2000 m thick succession dominated by 602 

volcanic rocks (Wilson, 2017). An increase in extensional rates may have generated the coarse, 603 

fault-controlled deposits of the overlying New Mills Formation (Bourque et al., 2000; Tremblay 604 

and Pinet, 2016), which are overlain by thick, bimodal volcanic rocks with a clear A2-type 605 

composition that form the bulk of the ~421 420 Ma Benjamin Formation (Figs. 7c,d, and 14, 606 

cross-section A-B, ~421 Ma). A similar setting is inferred for Pridoli felsic volcanic rocks in 607 
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Newfoundland based on scarce geochemical data that suggest an A-type affinity (Sandeman and 608 

Malpas, 1995; Currie, 2003). 609 

 610 

5.4. Lochkovian to earliest Emsian interval (~419 405 Ma) 611 

 612 

5.4.1. The Brabantian event in composite East Avalonia 613 

 The Siluro-Devonian boundary approximately marked the onset of Brabantian 614 

deformation in easternmost portions of the Avalonian domain (Dewaele et al., 2002; Debacker et 615 

al., 2005; Sintubin et al., 2009; Linnemann et al., 2012; Pharaoh, 2018). There is still much 616 

debate regarding what caused this Early Devonian event and the subsequent and partly 617 

overprinting Middle Devonian Acadian Orogeny in Europe. The Midlands Microcraton 618 

seemingly acted as a rigid internal indenter that rotated counter-clockwise with respect to the rest 619 

of composite East Avalonia during the Brabantian and Acadian events (Sintubin et al., 2009; 620 

partly based on palaeomagnetic data from Piper, 2007). This rotation implies that the region 621 

experienced shortening concentrated over a discrete area due to the docking of an external 622 

indenter. According to Soper et al. (1987, 1992) and Martinez Catalan et al. (2007), this external 623 

indenter was a peri Gondwanan terrane associated with Armorica (or Cadomia, sensu Nance et 624 

al., 2012), which, according to Kroner and Romer (2013), was in the form of a promontory (the 625 

Armorican Spur) attached to Gondwana (Fig. 16). Resistance of the Scandinavian Shield to this 626 

rotation generated the Brabantian belt in the area of the inferred Thor Suture to the northeast of 627 

the Midland Microcraton, whereas rocks to the northwest of the microcraton experienced 628 

sinistral transpression evolving towards sinistral transtension to the southeast (Sintubin et al., 629 

2009; Pharaoh, 2018).  630 
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5.4.2. Early Devonian foreland basin development in West Avalonia 632 

In West Avalonian terranes of northern Nova Scotia, the Siluro-Devonian boundary is 633 

marked by a transition from passive-margin marine sedimentation in the Pridoli Stonehouse 634 

Formation to coarsening-upward foreland basin deposits of the Lochkovian to Pragian Knoydart 635 

Formation, which bear palaeocurrent vectors that indicate a source to the southwest (Boucot et 636 

al., 1974; Murphy, 1987; Waldron et al., 1996). This suggests that collision between Gondwana 637 

and West Avalonia was already occurring in earliest Devonian times (Fig. 16, cross-section C-638 

D). In contrast, the now juxtaposed Meguma Belt of southern Nova Scotia was then 639 

accommodating quiet marine sediments (Jensen, 1975) that were hosting brachiopods with 640 

Rhenish affinities (Boucot, 1960). This suggests that rocks of the Meguma Terrane were 641 

proximal to Armorica/Cadomia, which is consistent with provenance data from the Silurian 642 

(White et al., 2018), but uninvolved in the early Devonian collisions that affected both West and 643 

composite East Avalonia (Fig. 16).  644 

 645 

5.4.3. Final closure of the Acadian Seaway 646 

One of the most challenging tectono-magmatic events to explain in the Appalachian647 

Caledonian is the onset of andesite-rich Early Devonian volcanism in the Matapedia cover 648 

sequence of northeastern North America, unconformably above Pridoli bimodal volcanic rocks 649 

that are clearly associated with extension or transtension (Wilson et al., 2017). The progressive 650 

depletion in HFSEs within these rocks (Fig. 8c,d) suggests a gradual reintroduction of hydrous 651 

conditions at the source. We propose that this volcanic succession may be the record of a 652 

reactivation of Acadian Seaway slab subduction beneath composite Laurentia (including the 653 

accreted Ganderian terranes) due to the Early Devonian docking of a Gondwanan promontory 654 
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against West Avalonia to the southwest, which forced convergence to resume between the latter 655 

and composite Laurentia (Figs. 2 and 16, Cross-section A-B). Hence, the previously aborted 656 

subduction zone beneath the South Ganderian margin of composite Laurentia would have 657 

provided a weak zone that could have partly accommodated the shortening generated by the 658 

convergence of Gondwana against West Avalonia (Fig. 16), which was still separated from 659 

composite Laurentia by a small remnant of the Acadian Seaway at the Siluro-Devonian boundary 660 

(Fig. 14). 661 

Final closure of the Acadian Seaway and accretion of West Avalonia to composite 662 

Laurentia occurred in late Emsian to Middle Devonian times and caused the Acadian Orogeny in 663 

northeastern North America (Figs. 2 and 17). A synchronous episode of shortening to the 664 

northwest of the Midland Microcraton in the British Isles has also been attributed to the Acadian 665 

Orogeny (eg. Soper et al., 1987; Woodcock et al., 2007) (Fig. 17). At the time, the Cornubian 666 

Basin of southern England (Fig. 1) was located outside of the collision zone, to the east 667 

(Woodcock, 2012c). Its post Acadian westward migration may have been associated with the 668 

same east-west fault system that caused the Meguma Terrane of Atlantic Canada to migrate 669 

westward by ~900-1000 km in relation to Avalonian domains along a large Middle Devonian to 670 

Carboniferous dextral strike-slip fault corridor (Keppie, 1982; Murphy et al., 2011). 671 

 672 

6. Conclusions 673 

 674 

Katian to earliest Emsian igneous rocks in the Appalachian Caledonian Belt all share 675 

characteristics of plate-margin magmatism (Figs. 6a,b 11a,b). However, differentiation between 676 

arc, slab-failure and plate-margin A2-type magmatism (Figs. 6c,d 11c,d) allowed us to draw a 677 
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clearer picture on the series of tectono-magmatic events that took place in terranes of that belt 678 

during the interval separating the Taconic Grampian and Acadian orogenies. Furthermore, 679 

relatively well constrained ages for these rocks allowed the identification of evolutionary trends 680 

in the geochemical data. Based on the latter as well as palaeomagnetic, palaeontologic, 681 

structural, stratigraphic and sedimentologic constraints, the following nuances can be added to 682 

the closure history of the Iapetus and Rheic oceans as well as their associated segments 683 

(Tornquist Sea, Tetagouche Exploits back-arc basin, and Acadian Seaway): 684 

- Based on the slab-failure signature of early to mid-Silurian igneous rocks to the north 685 

of the Dog Bay Line in the North Ganderian and Laurentian margin terranes of 686 

northeastern North America (Fig. 7c,d), closure of the Tetagouche Exploits back-arc 687 

basin took place earlier than previously thought (eg. Wilson et al., 2017), and in 688 

association with the early Silurian Salinic A unconformity rather than the late Silurian 689 

Salinic B unconformity.  690 

- In Ireland, slab failure occurred in mid-Silurian times (circa 428 Ma) prior to final 691 

closure of Iapetus, with no associated local deformation. However, Iapetus closure 692 

was already completed by then farther to the northeast, as recorded by Scandian 693 

deformation in terranes of northern Scotland and Greenland, which may have 694 

generated post-collisional slab failure (Fig. 13). 695 

- Based on geochronological constraints, igneous rocks produced in association with 696 

failure of the Iapetus and Tetagouche Exploits slabs show a gradual increase in 697 

HFSE contents with time (Figs. 7c,d and 10c,d), which we associate with a gradual 698 

dehydration of the mantle source due to the abortion of subduction. This trend is 699 

paired with a corresponding decrease in Nb/Y and La/Yb ratios with time, which we 700 
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attribute to a fading contribution of the failed slab at the source as it sinks to greater 701 

depths. 702 

- A switch from shallow subduction and arc magmatism to extensional, A2-type 703 

bimodal magmatism occurred at the Ludlow Pridoli boundary in South Ganderian 704 

terranes of coastal Maine and southwest New Brunswick (Fig. 7c,d)). This may have 705 

been caused by chain failure of the Acadian Seaway slab deep within the 706 

asthenosphere due to its interaction with the slowly sinking Tetagouche Exploits slab 707 

(Fig. 14, transect A-B), which had previously failed at a short distance inboard near 708 

the beginning of the Silurian (Fig. 12, transect A-B). Such conclusion is supported by 709 

the synchronous record of a rapid and short-lived regression along the north margin 710 

of West Avalonia (Fig. 15), which was nearby at the time and attached to the Acadian 711 

Seaway slab (Fig. 14, transect C-D). 712 

- Extensional tectonics associated with failure of the Acadian Seaway slab at depth 713 

seemingly migrated towards north Ganderian terranes during the Pridoli and produced 714 

extensional, A2-type bimodal volcanic rocks and coarse clastic deposits of the Dickie 715 

Cove Group (Fig. 14, sections A- - . Evidence for more hydrated 716 

volcanism at the base of the group than at the top (Fig. 7c,d) suggests an inheritance 717 

from the preceding subduction and slab failure settings and an associated delay in the 718 

development of a complete A2-type signature. 719 

- The Early Devonian Dalhousie Group, which overlaps the North Ganderian720 

Laurentian suture in northern New Brunswick and eastern Quebec (locality i in Fig. 721 

1), records a gradual return to hydrated, andesite-rich arc magmatism (Fig. 8c,d), 722 

which is synchronous with foreland basin development in West Avalonia (Table 2). It 723 
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is here proposed that these igneous rocks were produced by a reactivation of Acadian 724 

Seaway slab subduction beneath composite Laurentia forced by the prograding 725 

collision of Gondwana into West Avalonia, which was still attached to that remnant 726 

of oceanic lithosphere (Fig. 16). Final closure of the Acadian Seaway generated the 727 

laterally extensive Acadian Orogeny (Fig. 17 and Table 2). 728 
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Figure and Table captions 1292 

 1293 

Table 1. Katian to early Emsian igneous rock units at the localities featuring in Figure 1. 1294 

Abbreviations: badd.: baddeleyite; biostrat.: biostratigraphic; constr.: constraints; Ems.: Emsian; 1295 

Fm: Formation; Gp: Group; Lland.: Llandovery; Loch.: Lochkovian; Mon.: monazite; Ord.: 1296 

Ordovician; Settl.: Settlement; strat.: stratigraphic; tit.: titanium; zirc.: zircon. 1297 

Table 1. Igneous rock units at the localities featuring in Figure 1. Abbreviations: volcs: 1298 

volcanics; ig.: igneous; Fm : Formation; Gp : Group; C.: Cove; Dal.: Dalhousie; Settl.: 1299 

Settlement; lampr.: lamprophyre; inter.: intermediate; Lland.: Llandovery; Lochk: Lochkovian; 1300 

Ems.: Emsian; Ord.: Ordovician; strat.: stratigraphic; biostrat.: biostratigraphic. 1301 

 1302 

Fig. 1. Map of northeastern North America and Europe showing the main continental terrane 1303 

assemblages that were involved in the formation of the Appalachian Caledonian Belt. Details on 1304 

the lettered localities are included in the text and compiled in Table 1.  1305 

Fig. 2. Main tectono-magmatic events recorded in the study area. Ordovician, Silurian and 1306 

Devonian subdivisions are respectively from Bergström et al. (2008), Melchin et al. (2020), and 1307 

Becker et a. (2020). Letters in triangles and circles correspond respectively to intrusive and 1308 
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extrusive rocks at localities indicated in Fig. 1, with references for estimated ages indicated in 1309 

Table 1. Previous work and references therein include, 1: van Staal et al. (2016); 2: van Staal et 1310 

al. (2012); 3: van Staal et al. (2009); 4: Jutras et al. (2020); 5: Woodcock (2012a); 6: Chew and 1311 

Strachan (2014); 7: Rogers and van Staal, 2003; 8: Wilson et al. (2017); 9: Pharaoh et al. (1993); 1312 

10: Piñán-Llamas and Hepburn (2013); 11: Woodcock (2012b); 12: Boucot et al. (1974); 13: 1313 

Jakob et al. (2022); 14: Woodcock et al. (2007); 15: Murphy et al. (2004); 16: Kroner and Romer 1314 

(2013); 17: Tremblay and Pinet (2016), and Woodcock (2012c).  1315 

Fig. 3. Palaeocontinental reconstruction at ~462 Ma based on Woodcock (2012a), Zagorevski et 1316 

al. (2010), Murphy et al. (2008. 2012), Waldron et al. (2014), Phillips et al. (2016), van Staal et 1317 

al. (2016), Wilson et al. (2017), and Jutras et al. (2020). 1318 

Fig. 4. Accretion of North Ganderia to composite Laurentia near 455 Ma (Taconic phase C of 1319 

van Staal et al., 2007) followed by slab-window volcanism circa 454 Ma in the McGillivray 1320 

Brook Formation of Nova Scotia (Jutras et al., 2020) and the Snowdon Group of Wales 1321 

(Woodcock, 2012a; Lusty et al., 2017) due to the incomplete subduction of the Iapetan ridge 1322 

beneath Avalonia.  1323 

Fig. 5. Development of new, post Taconic Grampian subduction zones circa 453 Ma based on 1324 

Pharaoh et al., (1991, 1993), Noble et al. (1993) and Torsvik and Rehnström (2003), Woodcock 1325 

(2012a), and Wilson et al. (2017). Intrusive rocks from localities s and y are described in Table 1326 

1. 1327 

Fig. 6. Late Ordovician to Early Devonian igneous rocks in South Ganderian terranes of coastal 1328 

Maine and southern New Brunswick (data from Seaman et al., 1999; Barr et al., 2002; van 1329 

Wagoner et al., 2002; Llamas and Hepburn, 2013) plotted in (a) the Hf/3 Ta Th diagram of 1330 
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Wood (1980), (b) the Zr/Y vs Th/Yb diagram of Ross and Bédard (2009), and (c) the Nb+Y vs 1331 

Nb/Y and (d) Ta+Yb vs La/Yb diagrams of Whalen and Hildebrand (2019). 1332 

Fig. 7. Late Ordovician to Silurian igneous rocks in North Ganderian and Laurentian margin 1333 

terranes of northeastern North America (data from Whalen, 1989; David and Gariépy, 1990; 1334 

Giggie, 1999; Whalen et al., 2006; Wilson and Kamo, 2008; Wilson et al., 1995; Wilson, 2017) 1335 

plotted in (a) the Hf/3 Ta Th diagram of Wood (1980), (b) the Zr/Y vs Th/Yb diagram of Ross 1336 

and Bédard (2009), and (c) the Nb+Y vs Nb/Y and (d) Ta+Yb vs La/Yb diagrams of Whalen and 1337 

Hildebrand (2019). 1338 

Fig. 8. Lower Devonian igneous rocks in North Ganderian and Laurentian margin terranes of 1339 

northern New Brunswick and eastern Quebec (data from Murphy, 1989; Whalen et al., 1996; 1340 

Wilson et al., 2005; Walker, 2010; Wilson, 2017) plotted in (a) the Hf/3 Ta Th diagram of 1341 

Wood (1980), (b) the Zr/Y vs Th/Yb diagram of Ross and Bédard (2009), and (c) the Nb+Y vs 1342 

Nb/Y and (d) Ta+Yb vs La/Yb diagrams of Whalen and Hildebrand (2019). 1343 

Fig. 9. Lower Devonian igneous rocks in North Ganderian terranes of northern Newfoundland 1344 

(data from Aydin, 1995; Currie, 2003) plotted in (a) the Hf/3 Ta Th diagram of Wood (1980), 1345 

(b) the Zr/Y vs Th/Yb diagram of Ross and Bédard (2009), and (c) the Nb+Y vs Nb/Y and (d) 1346 

Ta+Yb vs La/Yb diagrams of Whalen and Hildebrand (2019). 1347 

Fig. 10. Late Ordovician to Early Devonian igneous rocks along the Laurentian margin in the 1348 

British Isles (data from Tindle and Pearce, 1981; Badenszki et al., 2019; Murphy et al., 2019; 1349 

Archibald and Murphy, 2021) plotted in (a) the Hf/3 Ta Th diagram of Wood (1980), (b) the 1350 

Zr/Y vs Th/Yb diagram of Ross and Bédard (2009), and (c) the Nb+Y vs Nb/Y and (d) Ta+Yb vs 1351 

La/Yb diagrams of Whalen and Hildebrand (2019). 1352 
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Fig. 11. Late Ordovician to Early Devonian igneous rocks (data from van de Kamp, 1969; 1353 

Greenough, 1984; Sloan and Bennett, 1990; Pharaoh et al., 1991, 1993) in the former micro-1354 

continents of West and composite East Avalonia plotted in (a) the Hf/3 Ta Th diagram of Wood 1355 

(1980), (b) the Zr/Y vs Th/Yb diagram of Ross and Bédard (2009), and (c) the Nb+Y vs Nb/Y 1356 

and (d) Ta+Yb vs La/Yb diagrams of Whalen and Hildebrand (2019). 1357 

Fig. 12. Proposed model for tectono-magmatic events that occurred during the ~441-429 Ma 1358 

interval (Llandovery to Wenlock) in rocks of the Appalachian Caledonian Belt. Isolated letters 1359 

correspond to localities on Fig. 1 described in Table 1, with red letters indicating the record of 1360 

intrusive rocks, black letters indicating the record of extrusive rocks, and red-and-black letters 1361 

indicating the record of both. Igneous rock units from that interval include the Dennys Formation 1362 

at locality b (Piñán-Llamas and Hepburn, 2013), intrusive and extrusive rocks from the Kingston 1363 

terrane at locality d (Barr et al., 2002), the Lac Raymond and Pointe aux Trembles formations at 1364 

locality g (David and Gariépy, 1990), the Weir Formation at locality j (Wilson et al., 2008), 1365 

various plutons at localities m and l (Whalen et al. (2006), the Topsails volcanic group at locality 1366 

o (Whalen, 1989), the q (Greenough et al., 1993), the Skomer 1367 

Volcanic Group at locality w (Thorpe et al., 1989), and the Tortworth volcanics at locality x (van 1368 

de Kamp, 1969; Pharaoh et al., 1991). 1369 

Fig. 13. Proposed model for tectono-magmatic events that occurred during the ~428-424 Ma 1370 

interval (latest Wenlock to Ludlow) in rocks of the Appalachian Caledonian Belt. Isolated letters 1371 

correspond to localities on Fig. 1 described in Table 1, with red letters indicating the record of 1372 

intrusive rocks, and black letters indicating the record of extrusive rocks. Igneous rock units from 1373 

that interval include the Cranberry Islands volcanic series at locality a (Seaman et al., 1999), the 1374 

Edmunds Formation, and possibly the Leighton and Eastport formations at locality b (Piñán-1375 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



Llamas and Hepburn, 2013), the Topsails intrusive suite at locality n (Whalen, 1989), early 1376 

intrusions in the Donegal composite pluton at locality r (Archibald and Murphy, 2021), the 1377 

Dunquin Group at locality u (Sloan and Bennett, 1990), and possibly the Tortworth volcanics at 1378 

locality x (van de Kamp, 1969; Pharaoh et al., 1991). 1379 

Fig. 14. Proposed model for tectono-magmatic events that occurred during the 423 421 Ma 1380 

interval (Pridoli) in rocks of the Appalachian Caledonian Belt. Isolated letters correspond to 1381 

localities on Fig. 1 described in Table 1, with red letters indicating the record of intrusive rocks, 1382 

and black or white letters indicating the record of extrusive rocks. Igneous rock units from that 1383 

interval include the Passamaquoddy Bay volcanic sequence at locality c (van Wagoner et al., 1384 

2002), the Dickie Cove and lower Tobique groups at localities h and e, respectively (Dostal et 1385 

al., 2020, 2021), and intrusive rocks in the Donegal composite pluton at locality r (Archibald and 1386 

Murphy, 2021). 1387 

Fig. 15. (a) Thin interval of early Pridoli continental red beds (Upper Member of the Moydart 1388 

Formation) between thick intervals of green marine mudrock in the Arisaig Group of northern 1389 

Nova Scotia (West Avalonia); (b) intertidal rhythmites in the gradational, but rapid transition 1390 

from subtidal to supratidal deposits near the Ludlow Pridoli boundary; (c) calcretes within the 1391 

barren Upper Member of the Moydart Formation, which is latest Ludlow to earliest Pridoli based 1392 

on biostratigraphic constraints. 1393 

Fig. 16. Proposed model for tectono-magmatic events that occurred during the ~417-407 Ma 1394 

interval (Lochkovian to earliest Emsian) in rocks of the Appalachian Caledonian Belt. Isolated 1395 

letters correspond to localities on Fig. 1 described in Table 1, with red letters indicating the 1396 

record of intrusive rocks, and black letters indicating the record of extrusive rocks. Igneous rock 1397 

units from that interval include the Dalhousie and upper Tobique groups at localities i and e, 1398 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



respectively (Wilson, 2017), the Lyall and Baldwin volcanics at locality k (Doyon and Dalpé, 1399 

1993), various plutons in the Miramichi Highlands of northern New Brunswick (locality f; 1400 

Whalen et al., 1996), the Fogo Island Batholith at locality p (Aydin, 1995; Currie, 2003), 1401 

intrusive rocks in the Donegal composite pluton at locality r (Archibald and Murphy, 2021), the 1402 

Loch Doon Pluton at locality s (Tindle and, 1981), and a xenolith within upper Palaeozoic 1403 

intrusive rocks at locality t (Badenszki et al., 2019). 1404 

Fig. 17. Proposed model for the Middle Devonian Acadian Orogeny. 1405 
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