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 25 

Abstract 26 

 27 

Voluminous bimodal volcanic rocks of the Silurian (~422 - 420 Ma) Dickie Cove Group 28 

in the Ganderia domain of northern New Brunswick, Canada, are subaerial units that 29 

were deposited in an extentional setting, with the mafic types corresponding to 30 

continental tholeiites. Felsic rocks are rhyolites with calc-alkaline affinities. They exhibit 31 

geochemical characteristics that are typical of A2-type felsic magmas, such as 32 

enrichments in the incompatible elements Zr, Nb and Y, as well as high FeO*/ 33 

(FeO*+MgO) and Ga/Al ratios. Their ℇNd(t) values are positive (+0.7 to 3.4), but lower 34 

than those of the associated basalts. Saturation thermometry has yielded average zircon 35 

crystallization temperature estimates for the rhyolites that are well above 900
o
C. The 36 

geochemical data indicate that the felsic melts were likely sourced from heterogeneous, 37 

Neoproterozoic lower crust, and generated by dehydration melting triggered by heat 38 

derived from underplated mafic magma. Parent melts of the rhyolites underwent 39 

fractional crystallization in a complex magma chamber prior to eruption. The Nd isotopic 40 

data suggest that the lower crust of Ganderia is similar to that of Avalonia in northern 41 

mainland Nova Scotia, and that the two microcontinents share a common Neoproterozoic 42 

history and origin as continental blocks rifted from neighboring parts of Gondwana. The 43 

tectono-magmatic setting of the Dickie Cove Group volcanic rocks is interpreted as being 44 

related to Pridolian, post-Salinic relaxation and slab breakoff, which generated volcanism 45 

initially constrained within the Chaleur Zone of the Chaleur Bay Synclinorium, a large 46 

domain of the northern Appalachians. This was followed later in the Pridolian by 47 
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extensional collapse and widening of the area of magmatic activity, which then prograded 48 

into the Tobique Zone farther to the southwest. 49 

 50 

 51 

Introduction 52 

 53 

The Appalachian orogenic belt extends for more than 3,000 km along the eastern 54 

margin of North America from Alabama in the southern United States to Newfoundland 55 

in the north. The northern Appalachian Orogen underwent a protracted and complex 56 

tectonic evolution that led to a collage of accreted terranes sandwiched between the 57 

Laurentian and Gondwanan cratonic and peri-cratonic domains (Fig. 1). The orogen 58 

formed during the early Paleozoic closure of Iapetus (proto-Atlantic Ocean) and of 59 

several marginal seaways and basins. This led to the accretion of intra-oceanic and 60 

continental margin arcs and microcontinents that were located in the Iapetus Ocean (e.g., 61 

Pollock et al., 2012; van Staal and Barr, 2012; Wilson et al., 2017). Later stages of 62 

Iapetus closure are characterized by the accretion of two peri-Gondwanan 63 

microcontinents, Ganderia and Avalonia, which docked during the middle Paleozoic prior 64 

to the accretion of the Gondwanan continent (e.g., van Staal and Barr, 2012). However, 65 

the nature, timing and modes of accretion of these microcontinents are still debated. For 66 

example, there is even disagreement on whether or not Ganderia and Avalonia represent 67 

distinct terranes (e.g., van Staal and Hatcher, 2010; Keppie et al., 2012; Waldron et al., 68 

2014).  69 
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Voluminous Silurian to Lower Devonian bimodal (mafic-felsic) volcanic rocks 70 

form part of an overstep sequence on the accreted vestiges of Iapetus at the margin of 71 

composite Laurentia. Study of these rocks can be critical for the understanding of 72 

accretionary/tectonic processes along the northern Appalachian Orogen and can also 73 

provide insights regarding the evolution of continental crust. This paper presents whole-74 

rock major and trace element data as well as isotopic data from bimodal volcanic rocks of 75 

the Silurian Dickie Cove Group (formerly part of the Chaleur Group) in northern New 76 

Brunswick, with a focus on the felsic rocks, in order to (1) discuss their petrogenesis and 77 

(2) constrain their tectonic and geodynamic settings in the context of Iapetus Ocean 78 

closure.  79 

 80 

 81 

Geological Setting 82 

 83 

A prominent feature of the northern Appalachians, the Matapedia cover sequence 84 

(MCS) is a large Middle Paleozoic successor (overstep) basin-fill that was deposited 85 

across the accreted vestiges of Iapetus on composite Laurentia (Fig. 2). The MCS 86 

unconformably overlies Ordovician rocks of the Ganderian Popelogan arc and 87 

Tetagouche-Exploits back-arc basin (van Staal et al., 2009). It extends from the Gaspé 88 

Peninsula of eastern Quebec to central Maine, and underlies a large part of northern New 89 

Brunswick.  90 

The MCS consists of three structural zones (Fig. 2), which are, from northwest to 91 

southeast, the Connecticut Valley-Gaspé Synclinorium, the Aroostook-Percé 92 
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Anticlinorium, and the Chaleur Bay Synclinorium (Rodgers, 1970; Wilson et al., 2004). 93 

The Chaleur Bay Synclinorium records extensive magmatic activity that immediately 94 

post-dates Silurian closure of the Tetagouche-Exploits back-arc basin and breakoff of the 95 

Tetagouche-Exploits lithosphere during the Salinic orogenic cycle. Closure of the back-96 

arc basin is also responsible for the Upper Ordovician to Silurian formation of the 97 

Brunswick subduction complex, an accretionary wedge (van Staal et al., 2009; Wilson et 98 

al., 2017). The Chaleur Bay Synclinorium is divided into two parts by the WSW-ENE 99 

trending Rocky Brook-Millstream Fault (Fig. 2). The northern part (the Chaleur Zone) 100 

contains two prominent subaerial to subaqueous post-Salinic volcanic suites hosted by 101 

the Pridolian (Silurian) Dickie Cove Group and the Lochkovian to lowermost Emsian 102 

(Lower Devonian) Dalhousie Group (Fig. 2C).   103 

The dominantly volcanic rocks of the Dickie Cove Group (DCG) (sensu Wilson 104 

and Kamo, 2012) were formerly assigned to the Chaleur Group by Irrinki (1990) and 105 

Walker and McCutcheon (1995). The DCG is composed of bimodal (mafic-felsic) 106 

volcanic rocks and minor associated volcanogenic sedimentary rocks. The upper part of 107 

the group (Benjamin Formation) predominantly consists of aphyric to feldspar-phyric 108 

rhyolites and felsic pyroclastic rocks (lithic tuff, lithic-crystal tuff and ignimbrite). Mafic 109 

volcanic and coarse-grained pyroclastic rocks are subordinate lithotypes. Facies of the 110 

felsic rocks are typical of volcanic rocks emplaced in subaerial environments. The DCG 111 

was dated by Wilson and Kamo (2008, 2012), who obtained a U-Pb zircon age of 112 

422.3±0.3 Ma from the base of the group, and 419.7±0.3 Ma from the top. The DCG  113 

unconformably overlies Silurian sedimentary rocks (Quinn Point Group) and is 114 

disconformably overlain by the Lower Devonian Dalhousie Group (Fig. 2C), which 115 



6 

 

 

comprises interbedded shallow marine sedimentary rocks as well as subaerial to shallow 116 

marine mafic and subordinate felsic effusive and pyroclastic rocks.  117 

The southern part of the Chaleur Bay Synclinorium (the Tobique Zone) includes 118 

the Pridolian to Lochkovian Tobique Group (TG), which contains sedimentary rocks as 119 

well as abundant mafic and felsic volcanic rocks (Wilson et al., 2017; Dostal et al. 1989, 120 

2016, 2020). Biostratigraphic and U-Pb zircon ages show that deposition of the TG 121 

overlaps that of both the Dickie Cove and Dalhousie groups (Wilson and Kamo, 2008), 122 

with the volcanic-dominated lower part of the Tobique Group correlating with the DCG, 123 

and the sedimentary-dominated upper part correlating with the Dalhousie Group. In the 124 

northern part of the Tobique Zone, near its faulted boundary with the Chaleur Zone, a 125 

continuous succession of Ludlovian to Lockhovian sedimentary rocks (Petit Rocher 126 

Group and Greys Gulch Formation; Fig. 2C) is conformably overlain by marine 127 

sedimentary rocks and subordinate subaqueous volcanic rocks of the upper part of the TG 128 

(Wilson, 2017), implying that the dominantly volcanic Pridolian successions of the DCG 129 

and basal TG belong to two distinct and geographically separated suites.  130 

 131 

 132 

Petrography 133 

 134 

Rhyolitic volcanic rocks of the DCG are massive to flow-banded, aphyric to 135 

porphyritic, and locally vesicular. The matrix of the volcanic rocks is fine-grained or 136 

glassy, and vitrification textures are common. Feldspar phenocrysts are euhedral to 137 

subhedral, whereas rare quartz phenocrysts are embayed. Biotite and Fe-Ti oxides are 138 
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rare, and zircon, apatite and monazite are accessory minerals. The volcanic rocks 139 

underwent low-grade metamorphism of zeolite to lower greenschist facies, as indicated 140 

by mineral assemblages in the associated mafic rocks (Dostal et al., 1989; Mossman and 141 

Bachinski, 1972). Their primary mineral assemblages are variable, but extensively 142 

replaced by secondary minerals such as sericite and chlorite. Typically, their K-feldspar 143 

fraction is sericitized, and their plagioclase fraction is saussuritized. 144 

 145 

 146 

Analytical Methods 147 

 148 

The analyzed felsic volcanic rocks were selected from a collection of more than 149 

one hundred samples collected during regional mapping of the DCG (e.g., Wilson et al. 150 

2005; Wilson, 2017). Whole-rock major and trace elements were analyzed at the 151 

Activation Laboratories Ltd. in Ancaster, Ontario, Canada. An inductively-coupled 152 

plasma-optical emission spectrometer was used for the analysis of major elements, 153 

whereas trace element contents were determined by inductively-coupled plasma mass 154 

spectrometry. Based on analytical results obtained from international standard rocks, the 155 

analytical precision and accuracy were typically better than 5% for major elements and 156 

better than 10% for trace elements.  157 

Sm and Nd contents as well as Nd isotope ratios were determined at the Atlantic 158 

Universities Regional Isotope Facility of the Department of Earth Sciences at Memorial 159 

University of Newfoundland (St. John’s, Newfoundland, Canada) by a multicollector 160 

Finnigan MAT 262 thermal ionization mass spectrometer (Pollock et al., 2015). During 161 
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the course of data acquisition, replicates of the JNdi-1 standard gave a mean value of 162 

143
Nd/

144
Nd = 0.512100 ± 0.000007 (2σ, n=21). All reported values for the samples were 163 

adjusted to the value of the JNdi-1 standard (
143

Nd/
144

Ndcertified = 0.512115 ± 7). The 2 σ 164 

values for 
143

Nd/
144

Nd ratios are given in Table 1. Initial Nd isotope ratios and epsilon 165 

values (ℇNd) were corrected using the age of 421 Ma (Table 1). TDM model ages (Table 1) 166 

were calculated in accordance with DePaolo (1988).  167 

 168 

 169 

Geochemistry 170 

 171 

Alteration 172 

 173 

As noted earlier, rocks of the DCG were modified by secondary processes that 174 

might have changed the concentration of mobile elements, including K2O and Na2O. 175 

Some samples were also hydrothermally altered. Several strongly altered samples were 176 

eliminated. The remaining samples show consistent variations of immobile- and mobile-177 

element patterns on various diagrams, suggesting that most element variations are likely 178 

related to magmatic processes. Furthermore, to limit the problem of alteration, the 179 

interpretations in this paper are based mainly on elements that are generally considered to 180 

be little affected by secondary processes, such as rare-earth elements (REE) and high-181 

field-strength elements (HFSE). 182 

 183 

 184 
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Major and Trace Elements  185 

 186 

Volcanic rocks of the DCG range from basalts to rhyolites, with rare intermediate 187 

rock-types, implying that the suite is bimodal. Wilson (2017) estimated that rocks with < 188 

52% silica constitute >30% of the suite, whereas rocks with >68% silica represent ~ 52% 189 

of the suite. The DCG mafic rocks are continental tholeiitic basalts and subordinate 190 

basaltic andesites (Dostal et al., 2016), but the felsic rocks are only poorly known. The 191 

DCG rhyolites have silica ranging from ~ 68% to 77% and plot mainly within the 192 

rhyolite field on the Zr/TiO2 versus Nb/Y classification diagram (Fig. 3). The felsic rocks 193 

have high Fe* (FeO*/FeO*+MgO) values (Fig. 4) and are ferroan (Frost et al., 2001). 194 

Overall, the rocks have low contents of CaO, TiO2, MgO and FeO*, but high contents of 195 

alkalis, which are characteristics of A-type felsic rocks. The rocks also show weak 196 

negative correlations of Al2O3, TiO2, MgO, FeO* and CaO with increasing silica, which 197 

is broadly consistent with the fractionation of ferromagnesian minerals, Fe-Ti oxides and 198 

calcic plagioclase. Consistent with the rift-related signature of associated basalts in the 199 

group (Dostal et al., 2016), the DCG felsic rocks plot into the A-type granite fields (Fig. 200 

5). 201 

The chondrite-normalized REE patterns of the felsic rocks display slight 202 

enrichment in light REE (LREE), but flat heavy REE (HREE) accompanied by negative 203 

Eu anomalies (Fig. 6). The (La/Yb)n ratios vary between 3.5 and 8.5, whereas (Tb/Yb)n 204 

ratios are between 1 and 1.5. The patterns are generally parallel to subparallel. The 205 

variably pronounced negative Eu anomalies reflect feldspar fractionation and suggest low 206 

oxygen fugacity in the felsic melt. The relatively flat HREE patterns imply the absence of 207 
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garnet at the source of these rhyolites, indicating an origin at relatively low pressures and 208 

at a depth that is shallower than the garnet stability field, which starts at a depth of ~60-209 

80 km (McKenzie and O’Nions, 1991). Unlike those of the rhyolites, REE patterns in the 210 

associated basalts of the group are linear, negative Eu anomalies are absent, and HREE 211 

define a steeper slope [(Tb/Yb)n ~2] (Fig. 6B; Dostal et al., 2016). 212 

According to their primitive mantle-normalized patterns, the felsic rocks are more 213 

enriched in both highly and moderately incompatible elements than the basalts (Fig. 7). 214 

The rhyolites display depletion in Ba, Sr, Ti and Eu, which suggests fractionation of 215 

feldspars and Fe-Ti oxides (Fig. 7), and which contrasts with the basalts. The felsic rocks 216 

also show negative Nb and Ta anomalies. The trace element patterns of some of these 217 

rocks resemble those of the continental crust (e.g., Rudnick and Gao, 2003).  218 

 219 

 220 

Isotopes 221 

 222 

ℇNd(t) values for the DCG rhyolites range from +0.73 to +3.37 (t=421 Ma). These 223 

values are notably higher that those of felsic volcanic rocks in the Tobique Zone (Dostal 224 

et al. 2020), but they are on average lower than those of the associated basalts (Table 1). 225 

They are also lower than values for the contemporaneous depleted mantle. The depleted 226 

mantle model age (TDM; after De Paolo, 1988) of the DCG rhyolites vary between 0.7 and 227 

1.0 Ga, and are slightly older than those of the basalts (0.65 - 0.8 Ga), but younger than 228 

those of felsic volcanic rocks in the Tobique Group (0.9 - 1.2 Ga). The DCG rhyolites 229 
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also have lower 
147

Sm/
144

Nd ratios (0.1196 - 0.1337) compared to the basalts (0.1400 - 230 

0.1475).  231 

 232 

 233 

Discussion 234 

 235 

Zircon saturation thermometry 236 

 237 

The temperature of zircon saturation (TZr
o
C) in felsic magmas has been used to 238 

characterize various felsic rocks in terms of their origin and thermal history (Miller et al., 239 

2003; Dostal et al. 2015; Xia et al., 2016; Murphy et al., 2018). For example, Miller et al. 240 

(2003) differentiate “hot” granites, which are assumed to be generated by anhydrous 241 

melting at high temperature (TZr >800
o
C), from “cold” granites (TZr < 800

o
C), which were 242 

derived from a crustal source in water-fluxed settings (Collins et al., 2016).  The 243 

temperature at which zircon starts to crystallize is related to major element composition 244 

as well as Zr concentrations. The relationship was tested experimentally and is expressed 245 

by the M value of Watson and Harrison (1983). Within an experimental range of M 246 

values (i.e. M=1.3 -1.9), the temperature estimates may be useful for petrogenetic 247 

considerations (Hanchar and Watson, 2003; Collins et al., 2016). Values of M, as 248 

calculated in accordance with Boehnke et al. (2013), are within the experimental range of 249 

Watson and Harrison (1983) for most of the DCG felsic rocks, indicating that the rocks 250 

can provide meaningful temperature estimates (Table 2). The temperature estimates range 251 

from 845
o
C to 1047

o
C, with an average value of 929

o
C (± 64

o
C s.d.).  This relatively 252 
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wide temperature range could in part be related to magma evolution in shallow crust 253 

(fractionation, alteration, host rock assimilation). Hence, the average or maximum values 254 

are considered to be more diagnostic (Murphy et al., 2018).  255 

Our results suggest that the initial magmatic temperature was well above 800
o
C, 256 

and that the DCG rhyolites therefore issued from a “hot” felsic melt (sensu Miller et al., 257 

2003). TZr (
o
C) values were also calculated for felsic volcanic rocks of the TG in order to 258 

assess possible petrogenetic similarities or dissimilarities between the two suites. 259 

Rhyolite samples from the TG (Dostal et al., 2020) provide temperature estimates that 260 

range from 797
o
C to 864

o
C, with an average of 824

o
C.  Results from both suites are 261 

consistent with the relatively hot melting temperature of the anhydrous lower crust 262 

(Huppert and Sparks, 1988; Annen et al., 2006, 2015). Although there is an overlap in 263 

zircon saturation temperatures between the TG and DCG rhyolites, the latter have a 264 

higher average value, which is consistent with the conclusion that the TG basalts were 265 

generated at a shallower depth than those of the DCG (Dostal et al., 2016). The DCG 266 

rhyolites also bear higher ℇNd(t) values than those of the TG suites (Dostal et al., 2020), 267 

which suggests that the DCG rhyolites had a larger proportion of mantle-derived material 268 

at their source. 269 

 270 

Monazite saturation thermometry 271 

 272 

To verify the relatively high crystallization temperature that is estimated for the 273 

DCG rhyolites, monazite saturation temperatures were calculated by relating the 274 

concentration of light REE to the bulk composition of the magma. The calculations 275 
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(based on Montel, 1993) yielded an average temperature of 853
o
C (± 40

o
C) for the DCG 276 

rhyolites (Table 2), which is consistent with monazite crystallization occurring after that 277 

of zircon, but which still suggests a relatively high crystallization temperature. All these 278 

temperature estimates are similar to modeled temperatures of partial melting of the crust 279 

associated with basalt injection (Annen and Sparks, 2002).  280 

 281 

Petrogenesis 282 

 283 

Unlike Silurian (Llandovery to Ludlow) volcanic rocks of the Coastal volcanic 284 

belt in Maine and southern New Brunswick, which are typical continental arc calc-285 

alkaline suites ranging from mafic to felsic types (Llamas and Hepburn, 2013), rocks of 286 

the Chaleur Bay Synclinorium farther inland are bimodal and include rift-related 287 

continental tholeiites inferred to be derived from the subcontinental lithospheric mantle 288 

(Dostal et al., 2016). However, the origin of the DCG rhyolitic rocks and of many other 289 

felsic rocks that are part of compositionally bimodal suites has been debated.  290 

Various models for the origin of bimodal suites have been discussed for decades 291 

(e.g., Bowen, 1928; Barbarin, 1999; Riley et al., 2001). The two main models are based 292 

on either crystal fractionation or crustal melting. The first model (e.g., Lacasse et al.  293 

2007; Waight et al., 2007) assumes a derivation of felsic magma by the extensive crystal 294 

fractionation of basaltic magma (up to 90%), or by a combined process of assimilation 295 

and fractional crystallization. The second model invokes partial melting of crustal rocks 296 

triggered by heating from underplated mantle-derived basaltic magmas (e.g., Huppert and 297 

Sparks, 1988). The latter model is frequently used (e.g., Annen and Sparks, 2002) to 298 



14 

 

 

explain the formation of large felsic magma reservoirs, as fractional crystallization would 299 

require an unreasonably large volume of basaltic parental magma.  300 

Variations in FeO*/MgO versus TiO2 (Fig. 8) show that there is no obvious 301 

relationship between the DCG mafic rocks, which display a typical tholeiitic fractionation 302 

trend, and the DCG felsic rocks, which show a calc-alkaline trend. This and other 303 

geochemical characteristics of these rocks, such as contrasting Tb/Yb and Th/Nb ratios as 304 

well as significant differences in Nd isotopic values (Table 1), suggest that the felsic 305 

rocks were not derived from the mafic rocks by crystal fractionation. Thus, the paucity of 306 

intermediate rock types (Daly gap), large volume of felsic rocks relative to associated 307 

mafic rocks, and contrasting geochemical and Nd isotopic characteristics between the two 308 

rock-types are consistent with a derivation from different sources. This process can also 309 

account for some compositional variations within felsic magma bodies (Altherr et al., 310 

2000; Shellnutt et al. 2011), as felsic magma heterogeneity may, in part, reflect 311 

heterogeneity of the crustal source. 312 

As noted earlier, the DCG felsic rocks are similar in composition to A-type (i.e. 313 

within plate) granitic rocks. Eby (1992) noted that A-type granitic rocks can be 314 

subdivided into at least two types. The parental magma of granites in the A1 subgroup is 315 

mafic and derived from a mantle source. A1 granites have incompatible trace elemental 316 

ratios that are similar to those of ocean-island basalts. The compositionally diverse A2 317 

subgroup is sourced from the lithosphere, and is characterized by elemental ratios that are 318 

similar to those of continental crust or island arc basalts. The DCG rhyolites have 319 

affinities with A2-type granites (Fig. 9). Many such granites are considered to represent 320 

magmas derived from the lower to middle crust (Eby 1992; King et al., 1997).  321 
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Some geochemical variation trends in the DCG rhyolitic rocks are likely related to 322 

differentiation processes, particularly fractional crystallization that occurred after the 323 

magma was formed.  In addition to fractionation of major phases, mainly feldspars and 324 

minor ferromagnesian minerals and Fe-Ti oxides, accessory minerals also played a role 325 

during fractional crystallization as they control much of the REE variation. A graph of 326 

(La/Yb)n versus La (Fig. 10A) suggests that fractionation of REE, the bulk of which is 327 

hosted by accessory phases, was dominated by the crystallization of monazite. Although 328 

fractional crystallization involved the crystallization of feldspars, variations in Ba and Sr, 329 

which are elements that are preferentially hosted by feldspars, do not correlate with 330 

negative Eu anomalies (Eu/Eu*). This may indicate buffering from the activity of fluids. 331 

Two distinct trends on the Ba versus Eu/Eu* diagram (Fig. 11A) suggest the existence of 332 

a complex magma chamber, although all the DCG rhyolites have similar evolutions.  333 

In addition to fractional crystallization, a variable degree of partial melting can 334 

also generate variations in rock composition. Schiano et al. (2010) suggested that partial 335 

melting and fractional crystallization processes can be identified from systematic changes 336 

in incompatible trace element concentrations and their ratios. The Ba/Zr versus Ba plot 337 

(Fig. 11B) shows that some samples were derived from different degrees of partial 338 

melting than the majority of the rhyolites. However, some significant compositional 339 

variations in the rhyolitic rocks cannot be attributed to fractional crystallization or to a 340 

variable degree of partial melting (e.g., variations in trace element ratios and Nd isotopic 341 

values), but rather point to a heterogeneous source. The Th/Nb versus Zr graph (Fig. 342 

10B) is useful for an evaluation of source heterogeneity: Th/Nb, which is not 343 

significantly affected by fractional crystallization, is plotted against an incompatible trace 344 
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element (Zr) that increases in concentration with fractionation. The variation in Th/Nb 345 

ratios (Fig. 10B) therefore likely reflect crustal source heterogeneity for the DCG 346 

rhyolites. The plot also implies that assimilation-fractional crystallization (AFC) 347 

processes, which lead to an enrichment trend that is intermediate between fractional 348 

crystallization and source heterogeneity vectors, do not appear to have played a 349 

significant role in the genesis of the rhyolites. 350 

The DCG rhyolitic rocks likely represent melts that were derived from crustal 351 

material. This conclusion is also supported by their distribution patterns in primitive 352 

mantle normalized plots, which display depletions in Nb, Ta, Ti, Eu, Ba, and Sr (Fig. 7), 353 

altogether indicating that the DCG felsic rocks have been sourced from continental crust. 354 

Nd model ages for the DCG rhyolites are Neoproterozoic (Table 1), which is consistent 355 

with the age of Ganderian basement rocks (van Staal et al., 1996, 2012; Dostal et al., 356 

2016, 2020; Fig. 12). Moreover, the ℇNd(t) values  overlap the isotope envelope of  357 

Avalonian crustal values (Fig. 12), which suggests that Ganderia and Avalonia have a 358 

common Neoproterozoic history and a similar lower/middle crust (Dostal et al., 2020). 359 

The Nd isotopic data also shows that the crustal source of the DCG rhyolites was similar 360 

but distinct from that of the TG rhyolites. 361 

Murphy et al. (2018) argued that partial melting of an anhydrous lower crustal 362 

source produced the A-type magmas of northern Nova Scotia, in West Avalonia. A 363 

similar process and source can be invoked for the DCG rhyolites. Partial melting of 364 

various crustal reservoirs has been invoked to explain the chemical characteristics of “A-365 

type” felsic rocks, such as a charnockitic lower crust, an I-type granite precursor, calc-366 

alkaline amphibole-bearing tonalite, mafic underplated rocks, and some others (e.g., 367 
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Collins et al., 1982; Creaser et al., 1991; King et al., 1997; Bonin, 2007). Dostal et al. 368 

(2020) inferred that partial melts of granodioritic/tonalitic and charnockitic rocks or their 369 

sedimentary or metamorphic equivalents have a major element composition that is 370 

similar to that of the A2-type TG felsic volcanic rocks, and that either could represent the 371 

parent material. Similar crustal source possibilities can be suggested for the DCG felsic 372 

rocks. The continental crust is compositionally diverse and includes both juvenile and 373 

recycled material. The Neoproterozoic TDM values for the DCG rhyolites suggest an 374 

ancient source that probably experienced episodic recycling, such as in a subduction zone 375 

or at the root of a continent-continent collision. Eby (1992) suggested that these processes 376 

may contribute to the “within-plate” signature of A2-type felsic rocks.  377 

Continental crust can melt as a result of repeated injections of hot mafic magmas 378 

(Huppert and Sparks, 1988; Annen and Sparks, 2002; Annen et al. 2006). The 379 

temperature of the crust may exceed 800
o
C during continuous basalt injection - hot 380 

enough to create partial melts (Annen and Sparks, 2002). Thus, rising mafic magma may 381 

have triggered melting of the crust from which the felsic rocks inherited their 382 

geochemical characteristics. This process is common during lithospheric extension and is 383 

a consequence of magmatic underplating (e.g. Huppert and Sparks, 1988). Hence, dry 384 

partial melting of the heterogeneous lower crust of Ganderia most likely produced the 385 

primary melt that sourced the DCG rhyolites. However, prior to its eruption, this primary 386 

melt may have resided in plutonic bodies such as the compositionally similar and almost 387 

coeval Landry Brook and Dickie Brook plutons, which intrude the DCG in the Chaleur 388 

Zone (Fig. 2) (Pilote et al., 2013; Wilson and Kamo, 2016).  389 

 390 
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 391 

Tectonic Setting 392 

 393 

Following accretion of Ganderia’s leading edge (the Popelogan arc) to Laurentia 394 

in the Upper Ordovician, the Tetagouche-Exploits back-arc basin that separated 395 

Ganderia’s leading and trailing segments began to close, culminating with the ~425 Ma 396 

Salinic Orogeny (van Staal et al., 2009; Zagorevski et al., 2010; Wilson et al., 2017) (Fig. 397 

13 A, B). At 422.3±0.3 Ma (Wilson and Kamo, 2008), the DCG provides some of the 398 

earliest record of extrusions related to post-Salinic extensional magmatism (sensu Dostal 399 

et al., 2020) in the northern Appalachians. A possible equivalent is the Stony Lake 400 

Rhyolite, which lies above the Salinic unconformity in Newfoundland, and which was 401 

roughly dated at 423+3/-2 Ma by Dunning et al. (1990). This volcanism has been 402 

associated with post-orogenic relaxation and breakoff of the Tetagouche-Exploits slab 403 

(van Staal et al., 2009; Wilson et al., 2017) (Fig. 13C). Mafic eruptions in the DCG may 404 

be linked to the ponding of asthenospheric melt in the rising root of the orogen, which 405 

resulted in high-degree partial melting of the subcontinental lithospheric mantle (Dostal 406 

et al., 2016) (Fig. 13C).  Evidence for high heat flow during generation of the DCG felsic 407 

melts suggests that its lower crustal source was located in the focus zone of mafic 408 

upwelling and crustal underplating (Fig. 13C). Because it was associated with a post-409 

orogenic rise of the lithosphere, initial post-Salinic magmatism was subaerial and limited 410 

in extent to a narrow, orogen-parallel belt.  411 

In New Brunswick, volcanism in the early part of the Pridolian was constrained to 412 

the Chaleur Zone (Wilson et al., 2017). Later in the Pridolian, extensional collapse of the 413 
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orogenic root (van Staal and de Roo, 1995) resulted in a widening of both the sub-414 

lithospheric and sub-crustal areas of underplating. This led to an expansion of the area of 415 

volcanism into the Tobique Zone, thus triggering the onset of TG volcanism (418.6 -    416 

420.8 Ma; Wilson et al, 2017) in a separate volcanic centre (Fig. 13D). Although these 417 

two zones are currently located roughly along-strike from each other, it is inferred that 418 

the Chaleur Zone lay farther west in relation to the Tobique Zone prior to post-Silurian 419 

dextral faulting along the Rocky Brook-Millstream fault system (Wilson, 2017). 420 

However, emplacement of both volcanic belts was originally parallel to the southwest-421 

northeast-trending Salinic grain of the orogen (Fig. 13D).  422 

Evidence for lower heat flow during generation of the TG felsic melts compared 423 

to the DCG melts suggests that the lower crustal source of the TG volcanic rocks was 424 

located farther away from the locus of mafic upwelling and crustal underplating (Fig. 425 

13D). This is consistent with Nd isotopic data, which imply that felsic rocks of the DCG 426 

and TG issued from two slightly distinct crustal sources.  427 

 428 

 429 

Conclusions 430 

 431 

Following the Wenlock-Ludlow Salinic Orogeny (Fig. 13A, B), post-orogenic 432 

relaxation and breakoff of the Tetagouche-Exploits slab resulted in the development of 433 

extensional tectonics in Ganderian rocks of the northern Appalachian orogen, and 434 

eventually led to the emplacement of Pridolian to lowermost Emsian bimodal suites in a 435 

discontinuous, orogen-parallel belt stretching from Maine to eastern Quebec. The ~422 - 436 
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420 Ma Dickie Cove Group of northern New Brunswick provides the earliest record of 437 

this long period of extensional volcanism, which, in the early part of the Pridolian, was 438 

constrained to the Chaleur Zone in the northern part of the Chaleur Bay Synclinorium 439 

(Fig. 13C).  440 

Rhyolites are the dominant felsic rock type in the voluminous bimodal volcanic 441 

suite of the Dickie Cove Group. Geochemical evidence suggests that these felsic rocks, 442 

which show a calc-alkaline trend, were not produced by fractional crystallization of 443 

associated mafic melts, which show a tholeiitic trend. The geochemical data indicate that 444 

the felsic melts, which plot as “within-plate”, A2-type melts on various discrimination 445 

diagrams, were likely sourced from heterogeneous, Neoproterozoic lower crust, and that 446 

they were generated by dehydration melting triggered by heat derived from the associated 447 

mafic magma. Saturation thermometry has yielded average zircon and monazite 448 

crystallization temperature estimates for the rhyolitic rocks that are well above 900
o
C and 449 

800
o
C, respectively. Parent melts of the DCG rhyolites underwent fractional 450 

crystallization in a complex of magma chambers prior to erupting in sub-aerial 451 

conditions.  452 

The ℇNd(t) values of the DCG rhyolites are positive (+0.73 to +3.37), but lower 453 

than those of the associated basalts. Nd model ages are Neoproterozoic (0.7 - 1.0 Ga), 454 

which is typical of Ganderian and Avalonian crust. The data also suggest that the lower 455 

crust of Ganderia is similar to that of Avalonia in northern mainland Nova Scotia. This is 456 

consistent with Nd isotopic data from some Silurian to Lower Devonian granitic and 457 

felsic rocks in other areas of Ganderia (e.g., Whalen et al., 1994, 1996), which also plot 458 

into the Avalonian envelope (Fig. 12; Dostal et al., 2020). The similarity of lower crust 459 
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composition in both microcontinents suggests a common Neoproterozoic history and is 460 

consistent with their inferred origin as continental blocks rifted from neighboring parts of 461 

Gondwana (e.g., van Staal and Barr, 2012; van Staal et al., 2012; Waldron et al., 2014).  462 

 463 
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Table 1.  Nd isotopic compositon of volcanic rocks of the Dickie Cove Group. 767 
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 774 

Figure 1. Major lithotectonic domains of the northern Appalachians (modified after van 775 

Staal and Barr, 2012 and Dostal et al., 2016). NB: New Brunswick.  776 
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 777 

Figure 2. (A) Simplified geology of the Chaleur Bay Synclinorium and adjacent inliers in 778 

New Brunswick (modified from Wilson et al., 2017). U-Pb zircon dates from Silurian to 779 

Lower Devonian felsic volcanic rocks of the Tobique and Dickie Cove groups are 780 

indicated, as well as from the Silurian Landry Brook [LB] pluton and Silurian-Lower 781 

Devonian Dickie Brook [DB] pluton, both of which intrude the Dickie Cove Group. Data 782 

from (1) Wilson and Kamo (2008), (2) Wilson and Kamo (2012), (3) Pilote et al. (2013), 783 

and (4) Wilson et al. (2017). (B) Areal extent of the Chaleur and Tobique zones, which 784 

are respectively to the north and south of the Rocky Brook - Millstream Fault. (C) 785 

Stratigraphic columns showing the age of  Silurian to Lower Devonian volcanic rocks of 786 

the Dickie Cove, Tobique and Dalhousie groups in the Chaleur Zone and in the northern 787 

part of the Tobique Zone.   788 

 789 

Figure 3. Zr/TiO2 versus Nb/Y classification diagram for the DCG bimodal suite 790 

(modified from Winchester and Floyd, 1977). Fields: TA - Trachyandesite; Alk-Bas - 791 

Alkali basalt. 792 

 793 

Figure 4.  Fe* [(FeO*/(FeO*+MgO)] versus SiO2 (wt.%) for the DCG rhyolitic rocks 794 

showing the separation of ferroan and magnesian rocks (after Frost et al. 2001). 795 

 796 

Figure 5. (A) 10,000xGa/Al versus Zr (ppm) diagram (after Whalen et al., 1987) for the 797 

DCG rhyolitic rocks classifying them as A-type rocks. Fields: I&S field is for I- and S-798 

type granites while the A field is for the A-type granites. (B) Y+Nb (ppm) versus La/Yb 799 
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discrimination diagram of Whalen and Hildebrand (2019) showing the A-type 800 

characteristics of the DCG felsic volcanic rocks. 801 

 802 

Figure 6. Chondrite-normalized rare-earth element diagrams for the DCG rocks (A) 803 

rhyolitic rocks: (B) basaltic rocks (after Dostal et al., 2016). Normalizing values are after 804 

Sun and McDonough (1989). 805 

 806 

Figure 7. Primitive-mantle normalized incompatible element abundances for the DCG 807 

rocks: (A) rhyolitic rocks, (B) basaltic rocks (after Dostal et al., 2016). Elements are 808 

arranged in the order of decreasing incompatibility from left to right. Normalizing values 809 

are after Sun and McDonough (1989). 810 

 811 

Figure 8. TiO2 (wt.%) versus FeO*/MgO diagram for the DCG rocks. Vectors depict 812 

tholeiitic and calc-alkali fractionation trends (after Miyashiro, 1974).  FeO* - total Fe as 813 

FeO. 814 

 815 

Figure 9. Y-Nb-Ce diagram for the DCG rhyolitic rocks discriminating between A1 and 816 

A2-types of anorgenic granites (Eby, 1992). A1-type anorogenic granites related to ocean 817 

island-type sources; A2-type anorogenic granites derived from continental crust sources. 818 

 819 

Figure 10. (A) Chondrite-normalized La/Yb ratio versus La (ppm) diagram for the DCG 820 

felsic rocks.  Fractionation vectors for accessory minerals are after Wu et al. (2003). 821 

Mineral vectors are based on fractionation of monazite (Mon), allanite (Allan), apatite 822 
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(Ap), titanite (Tit) and zircon (Zr).  (B) Variations of Th/Nb versus Zr (ppm) in the DCG 823 

rhyolitic rocks showing the vectors for increasing fractional crystallization (FC), 824 

combined assimilation-fractional crystallization (AFC) and source heterogeneity 825 

(modified after El-Bialy and Hassen, 2012). 826 

 827 

Figure 11. (A) Variations of Ba (ppm) versus Eu/Eu* in the DCG rhyolitic rocks. Eu 828 

anomalies are calculated as (Eu/Eu*) where Eu denotes the chondrite-normalized value 829 

and Eu* represents the Eu value expected for a smooth chondrite-normalized REE 830 

pattern. (B).  Variations of Ba/Zr versus Ba (ppm) in the DCG rhyolitic rocks showing 831 

the vectors for fractional crystallization and partial melting (after Schiano et al. 2010 and 832 

Wang et al. 2019). 833 

 834 

Figure 12. ℇNd(t) versus time plot comparing Sm-Nd isotopic data of the DCG and TG 835 

rhyolitic rocks with basaltic rocks of Avalonia (Keppie et al., 1997; Murphy et al., 2011) 836 

and Ganderia (Dostal et al., 2016, 2020) of Nova Scotia and New Brunswick. Shaded 837 

area (envelope) is the Avalonian basement and SCLM (after Keppie et al., 2012; Murphy 838 

et al., 2011, 2018). The field for Mesoproterozoic rocks is from Murphy et al. (2008). 839 

CHUR- chondritic uniform reservoir. 840 

 841 

Figure 13. Tectonic model for Silurian volcanism in the northern Appalachians. (A) 842 

Closure of the Tetagouche-Exploits back-arc basin and deposition of forearc rocks of the 843 

Matapedia cover sequence (MCS) following the Upper Ordovician accretion of 844 

Ganderia’s leading edge (the Popelogan arc) to Laurentia. (B) Closure of the back-arc 845 
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basin culminating with the Wenlock-Ludlow Salinic Orogeny and initial deposition of the 846 

syn-orogenic Petit Rocher Group in northern New Brunswick. (C) Pridolian mafic 847 

magmatism triggered by detachment of the Tetagouche-Exploits slab (TES), post-848 

orogenic root relaxation, and partial melting of the sub-continental lithospheric mantle 849 

(SCLM). Felsic melts were in turn produced at the base of the crust by heat derived from 850 

mafic underplating. The Dickie Cove Group (DCG) rhyolites of the Chaleur Zone were 851 

ultimately sourced from felsic diapirs issued from the base of the crust. (D) Extensional 852 

collapse of the Salinic root later in the Pridolian, and expansion of the volcanic belt to 853 

form a distinct volcanic suite in the Tobique Zone.  854 
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Table 1.  Nd isotopic compositon of volcanic rocks of the Dickie Cove Group

Sample Age 
(Ma) Nd(ppm) Sm(ppm) 147Sm/144Nd 143Nd/144Nd(m) 2σ 143Nd/144Nd(i) ƐNd(t)

T DM

(Ma)
207 421 81.49 16.44 0.1219 0.512469 7 0.512133 0.73 958
402 421 36.57 8.09 0.1337 0.512556 7 0.512187 1.79 934
285 421 65.13 12.88 0.1196 0.512598 7 0.512268 3.37 733
629 421 45.21 9.36 0.1253 0.512524 6 0.512179 1.62 901

PB6* 421 23.87 5.82 0.1475 0.512769 6 0.512362 5.21 652
247* 421 28.01 6.48 0.1400 0.512653 7 0.512267 3.35 818
748* 421 18.35 4.25 0.1402 0.512694 6 0.512307 4.14 738

crystallization age (t =143Nd/144Nd(m)- measured value;  143Nd/144Nd(i) - initial, calculated value; 
*-after Dostal et al. (2016)

TDM-depleted mantle model age calculated using the model of DePaolo (1988). ɛNd(t) - age-corrected values for the  421 Ma);



Table 2 Zircon and monazite saturation thermometry estimates of rhyolitic rocks of Dickie Cove Group
177 629 BE3 BE4 BR5 207 266 285 325 402

M 1.28 1.28 1.32 1.4 1.36 1.26 1.59 1.25 0.06 1.33
TZr

oC 873 867 874 1006 869
TMz

oC 869 841 866 859 861 904 913 872 926 822

482 204 278 C-1 C-3 C-6 C-7 19 23 17
M 1.28 1.17 1.39 1.87 1.86 1.74 1.57 1.27 1.54 1.57

TZr
oC 954 945 919 968 1047 975 845

TMz
oC 808 897 863 807 799 834 867 778 866 817

M = [Na+K+2Ca] / [Al*Si]; TZr
oC = zircon saturation temparature calculated according to 

Boehnke et al. (2013); 
TMzoC = monazite saturation temperature calculated according to Montel (1993).
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