FOR PEER REVIEW - CONFIDENTIAL

Geochemical and Nd isotopic constraints on the origin of uppermost Silurian rhyolitic rocks in the northern Appalachians (northern New Brunswick): tectonic implications

Tracking no: BK659-APPALACHIAR

Authors:

Jaroslav Dostal (Saint Mary's University), Pierre Jutras (Saint Mary's University), and Reginald Wilson (University of New Brunswick)

Abstract:

Voluminous bimodal volcanic rocks of the Silurian (~422 - 420 Ma) Dickie Cove Group in the Ganderia domain of northern New Brunswick, Canada, are subaerial units that were deposited in an extentional setting, with the mafic types corresponding to continental tholeiites. Felsic rocks are rhyolites with calc-alkaline affinities. They exhibit geochemical characteristics that are typical of A2-type felsic magmas, such as enrichments in the incompatible elements Zr, Nb and Y, as well as high FeO*/ (FeO*+MgO) and Ga/AI ratios. Their ENd(t) values are positive (+0.7 to 3.4), but lower than those of the associated basalts. Saturation thermometry has yielded average zircon crystallization temperature estimates for the rhyolites that are well above 900oC. The geochemical data indicate that the felsic melts were likely sourced from heterogeneous, Neoproterozoic lower crust, and generated by dehydration melting triggered by heat derived from underplated mafic magma. Parent melts of the rhyolites underwent fractional crystallization in a complex magma chamber prior to eruption. The Nd isotopic data suggest that the lower crust of Ganderia is similar to that of Avalonia in northern mainland Nova Scotia, and that the two microcontinents share a common Neoproterozoic history and origin as continental blocks rifted from neighboring parts of Gondwana. The tectono-magmatic setting of the Dickie Cove Group volcanic rocks is interpreted as being related to Pridolian, post-Salinic relaxation and slab breakoff, which generated volcanism initially constrained within the Chaleur Zone of the Chaleur Bay Synclinorium, a large domain of the northern Appalachians. This was followed later in the Pridolian by extensional collapse and widening of the area of magmatic activity, which then prograded into the Tobique Zone farther to the southwest.

1 2 3	Geochemical and Nd isotopic constraints on the origin of uppermost Silurian
4	rhyolitic rocks in the northern Appalachians (northern New Brunswick): tectonic
5	implications
6	
7	
8	
9	Jaroslav Dostal ^{1*} , Pierre Jutras ¹ and Reginald A. Wilson ²
10	
11	
12	
13	
14	
15	
16	
17	
18	1. Department of Geology, Saint Mary's University, Halifax, Nova Scotia B3H
19	3C3,Canada
20	2. 235 Flemming Road, Fredericton, New Brunswick E3B 5J8, Canada
21	
22	
23	
24	* Corresponding author (e-mail: jdostal@smu.ca)

26 Abstract

28	Voluminous bimodal volcanic rocks of the Silurian (~422 - 420 Ma) Dickie Cove Group
29	in the Ganderia domain of northern New Brunswick, Canada, are subaerial units that
30	were deposited in an extentional setting, with the mafic types corresponding to
31	continental tholeiites. Felsic rocks are rhyolites with calc-alkaline affinities. They exhibit
32	geochemical characteristics that are typical of A2-type felsic magmas, such as
33	enrichments in the incompatible elements Zr, Nb and Y, as well as high FeO*/ $$
34	(FeO*+MgO) and Ga/Al ratios. Their $\mathcal{E}_{Nd}(t)$ values are positive (+0.7 to 3.4), but lower
35	than those of the associated basalts. Saturation thermometry has yielded average zircon
36	crystallization temperature estimates for the rhyolites that are well above 900°C. The
37	geochemical data indicate that the felsic melts were likely sourced from heterogeneous,
38	Neoproterozoic lower crust, and generated by dehydration melting triggered by heat
39	derived from underplated mafic magma. Parent melts of the rhyolites underwent
40	fractional crystallization in a complex magma chamber prior to eruption. The Nd isotopic
41	data suggest that the lower crust of Ganderia is similar to that of Avalonia in northern
42	mainland Nova Scotia, and that the two microcontinents share a common Neoproterozoic
43	history and origin as continental blocks rifted from neighboring parts of Gondwana. The
44	tectono-magmatic setting of the Dickie Cove Group volcanic rocks is interpreted as being
45	related to Pridolian, post-Salinic relaxation and slab breakoff, which generated volcanism
46	initially constrained within the Chaleur Zone of the Chaleur Bay Synclinorium, a large
47	domain of the northern Appalachians. This was followed later in the Pridolian by

51

52 Introduction

53

54 The Appalachian orogenic belt extends for more than 3,000 km along the eastern 55 margin of North America from Alabama in the southern United States to Newfoundland 56 in the north. The northern Appalachian Orogen underwent a protracted and complex 57 tectonic evolution that led to a collage of accreted terranes sandwiched between the 58 Laurentian and Gondwanan cratonic and peri-cratonic domains (Fig. 1). The orogen 59 formed during the early Paleozoic closure of Iapetus (proto-Atlantic Ocean) and of 60 several marginal seaways and basins. This led to the accretion of intra-oceanic and 61 continental margin arcs and microcontinents that were located in the Iapetus Ocean (e.g., 62 Pollock et al., 2012; van Staal and Barr, 2012; Wilson et al., 2017). Later stages of 63 Iapetus closure are characterized by the accretion of two peri-Gondwanan 64 microcontinents, Ganderia and Avalonia, which docked during the middle Paleozoic prior 65 to the accretion of the Gondwanan continent (e.g., van Staal and Barr, 2012). However, 66 the nature, timing and modes of accretion of these microcontinents are still debated. For 67 example, there is even disagreement on whether or not Ganderia and Avalonia represent distinct terranes (e.g., van Staal and Hatcher, 2010; Keppie et al., 2012; Waldron et al., 68 69 2014).

70	Voluminous Silurian to Lower Devonian bimodal (mafic-felsic) volcanic rocks
71	form part of an overstep sequence on the accreted vestiges of Iapetus at the margin of
72	composite Laurentia. Study of these rocks can be critical for the understanding of
73	accretionary/tectonic processes along the northern Appalachian Orogen and can also
74	provide insights regarding the evolution of continental crust. This paper presents whole-
75	rock major and trace element data as well as isotopic data from bimodal volcanic rocks of
76	the Silurian Dickie Cove Group (formerly part of the Chaleur Group) in northern New
77	Brunswick, with a focus on the felsic rocks, in order to (1) discuss their petrogenesis and
78	(2) constrain their tectonic and geodynamic settings in the context of Iapetus Ocean
79	closure.
80	
81	
82	Geological Setting
83	
84	A prominent feature of the northern Appalachians, the Matapedia cover sequence
85	(MCS) is a large Middle Paleozoic successor (overstep) basin-fill that was deposited
86	across the accreted vestiges of Iapetus on composite Laurentia (Fig. 2). The MCS
87	unconformably overlies Ordovician rocks of the Ganderian Popelogan arc and
88	Tetagouche-Exploits back-arc basin (van Staal et al., 2009). It extends from the Gaspé
89	Peninsula of eastern Quebec to central Maine, and underlies a large part of northern New
90	Brunswick.
91	The MCS consists of three structural zones (Fig. 2), which are, from northwest to

92 southeast, the Connecticut Valley-Gaspé Synclinorium, the Aroostook-Percé

93 Anticlinorium, and the Chaleur Bay Synclinorium (Rodgers, 1970; Wilson et al., 2004). 94 The Chaleur Bay Synclinorium records extensive magmatic activity that immediately 95 post-dates Silurian closure of the Tetagouche-Exploits back-arc basin and breakoff of the 96 Tetagouche-Exploits lithosphere during the Salinic orogenic cycle. Closure of the back-97 arc basin is also responsible for the Upper Ordovician to Silurian formation of the 98 Brunswick subduction complex, an accretionary wedge (van Staal et al., 2009; Wilson et 99 al., 2017). The Chaleur Bay Synclinorium is divided into two parts by the WSW-ENE 100 trending Rocky Brook-Millstream Fault (Fig. 2). The northern part (the Chaleur Zone) 101 contains two prominent subaerial to subaqueous post-Salinic volcanic suites hosted by 102 the Pridolian (Silurian) Dickie Cove Group and the Lochkovian to lowermost Emsian 103 (Lower Devonian) Dalhousie Group (Fig. 2C). 104 The dominantly volcanic rocks of the Dickie Cove Group (DCG) (sensu Wilson 105 and Kamo, 2012) were formerly assigned to the Chaleur Group by Irrinki (1990) and 106 Walker and McCutcheon (1995). The DCG is composed of bimodal (mafic-felsic) 107 volcanic rocks and minor associated volcanogenic sedimentary rocks. The upper part of 108 the group (Benjamin Formation) predominantly consists of aphyric to feldspar-phyric 109 rhyolites and felsic pyroclastic rocks (lithic tuff, lithic-crystal tuff and ignimbrite). Mafic 110 volcanic and coarse-grained pyroclastic rocks are subordinate lithotypes. Facies of the 111 felsic rocks are typical of volcanic rocks emplaced in subaerial environments. The DCG was dated by Wilson and Kamo (2008, 2012), who obtained a U-Pb zircon age of 112 113 422.3 ± 0.3 Ma from the base of the group, and 419.7 ± 0.3 Ma from the top. The DCG 114 unconformably overlies Silurian sedimentary rocks (Quinn Point Group) and is 115 disconformably overlain by the Lower Devonian Dalhousie Group (Fig. 2C), which

The southern part of the Chaleur Bay Synclinorium (the Tobique Zone) includes 118 119 the Pridolian to Lochkovian Tobique Group (TG), which contains sedimentary rocks as 120 well as abundant mafic and felsic volcanic rocks (Wilson et al., 2017; Dostal et al. 1989, 121 2016, 2020). Biostratigraphic and U-Pb zircon ages show that deposition of the TG 122 overlaps that of both the Dickie Cove and Dalhousie groups (Wilson and Kamo, 2008), 123 with the volcanic-dominated lower part of the Tobique Group correlating with the DCG, 124 and the sedimentary-dominated upper part correlating with the Dalhousie Group. In the 125 northern part of the Tobique Zone, near its faulted boundary with the Chaleur Zone, a 126 continuous succession of Ludlovian to Lockhovian sedimentary rocks (Petit Rocher 127 Group and Greys Gulch Formation; Fig. 2C) is conformably overlain by marine 128 sedimentary rocks and subordinate subaqueous volcanic rocks of the upper part of the TG 129 (Wilson, 2017), implying that the dominantly volcanic Pridolian successions of the DCG 130 and basal TG belong to two distinct and geographically separated suites. 131 132

133 Petrography

134

Rhyolitic volcanic rocks of the DCG are massive to flow-banded, aphyric to porphyritic, and locally vesicular. The matrix of the volcanic rocks is fine-grained or glassy, and vitrification textures are common. Feldspar phenocrysts are euhedral to subhedral, whereas rare quartz phenocrysts are embayed. Biotite and Fe-Ti oxides are

139 rare, and zircon, apatite and monazite are accessory minerals. The volcanic rocks 140 underwent low-grade metamorphism of zeolite to lower greenschist facies, as indicated 141 by mineral assemblages in the associated mafic rocks (Dostal et al., 1989; Mossman and 142 Bachinski, 1972). Their primary mineral assemblages are variable, but extensively 143 replaced by secondary minerals such as sericite and chlorite. Typically, their K-feldspar 144 fraction is sericitized, and their plagioclase fraction is saussuritized. 145 146 147 **Analytical Methods** 148 149 The analyzed felsic volcanic rocks were selected from a collection of more than 150 one hundred samples collected during regional mapping of the DCG (e.g., Wilson et al. 151 2005; Wilson, 2017). Whole-rock major and trace elements were analyzed at the 152 Activation Laboratories Ltd. in Ancaster, Ontario, Canada. An inductively-coupled 153 plasma-optical emission spectrometer was used for the analysis of major elements, 154 whereas trace element contents were determined by inductively-coupled plasma mass 155 spectrometry. Based on analytical results obtained from international standard rocks, the 156 analytical precision and accuracy were typically better than 5% for major elements and 157 better than 10% for trace elements. 158 Sm and Nd contents as well as Nd isotope ratios were determined at the Atlantic

Universities Regional Isotope Facility of the Department of Earth Sciences at Memorial
University of Newfoundland (St. John's, Newfoundland, Canada) by a multicollector
Finnigan MAT 262 thermal ionization mass spectrometer (Pollock et al., 2015). During

162	the course of data acquisition, replicates of the JNdi-1 standard gave a mean value of
163	$^{143}\text{Nd}/^{144}\text{Nd}$ = 0.512100 \pm 0.000007 (25, n=21). All reported values for the samples were
164	adjusted to the value of the JNdi-1 standard ($^{143}Nd/^{144}Nd_{certified}$ = 0.512115 \pm 7). The 2 σ
165	values for ¹⁴³ Nd/ ¹⁴⁴ Nd ratios are given in Table 1. Initial Nd isotope ratios and epsilon
166	values (\mathcal{E}_{Nd}) were corrected using the age of 421 Ma (Table 1). T _{DM} model ages (Table 1)
167	were calculated in accordance with DePaolo (1988).
168	
169	
170	Geochemistry
171	
172	Alteration
173	
174	As noted earlier, rocks of the DCG were modified by secondary processes that
175	might have changed the concentration of mobile elements, including K ₂ O and Na ₂ O.
176	Some samples were also hydrothermally altered. Several strongly altered samples were
177	eliminated. The remaining samples show consistent variations of immobile- and mobile-
178	element patterns on various diagrams, suggesting that most element variations are likely
179	related to magmatic processes. Furthermore, to limit the problem of alteration, the
180	interpretations in this paper are based mainly on elements that are generally considered to
181	be little affected by secondary processes, such as rare-earth elements (REE) and high-
182	field-strength elements (HFSE).
183	
184	

187	Volcanic rocks of the DCG range from basalts to rhyolites, with rare intermediate
188	rock-types, implying that the suite is bimodal. Wilson (2017) estimated that rocks with <
189	52% silica constitute >30% of the suite, whereas rocks with >68% silica represent ~ 52%
190	of the suite. The DCG mafic rocks are continental tholeiitic basalts and subordinate
191	basaltic andesites (Dostal et al., 2016), but the felsic rocks are only poorly known. The
192	DCG rhyolites have silica ranging from ~ 68% to 77% and plot mainly within the
193	rhyolite field on the Zr/TiO ₂ versus Nb/Y classification diagram (Fig. 3). The felsic rocks
194	have high Fe* (FeO*/FeO*+MgO) values (Fig. 4) and are ferroan (Frost et al., 2001).
195	Overall, the rocks have low contents of CaO, TiO ₂ , MgO and FeO*, but high contents of
196	alkalis, which are characteristics of A-type felsic rocks. The rocks also show weak
197	negative correlations of Al ₂ O ₃ , TiO ₂ , MgO, FeO* and CaO with increasing silica, which
198	is broadly consistent with the fractionation of ferromagnesian minerals, Fe-Ti oxides and
199	calcic plagioclase. Consistent with the rift-related signature of associated basalts in the
200	group (Dostal et al., 2016), the DCG felsic rocks plot into the A-type granite fields (Fig.
201	5).
202	The chondrite-normalized REE patterns of the felsic rocks display slight
203	enrichment in light REE (LREE), but flat heavy REE (HREE) accompanied by negative
204	Eu anomalies (Fig. 6). The $(La/Yb)_n$ ratios vary between 3.5 and 8.5, whereas $(Tb/Yb)_n$
205	ratios are between 1 and 1.5. The patterns are generally parallel to subparallel. The
206	variably pronounced negative Eu anomalies reflect feldspar fractionation and suggest low
207	oxygen fugacity in the felsic melt. The relatively flat HREE patterns imply the absence of

208	garnet at the source of these rhyolites, indicating an origin at relatively low pressures and
209	at a depth that is shallower than the garnet stability field, which starts at a depth of \sim 60-
210	80 km (McKenzie and O'Nions, 1991). Unlike those of the rhyolites, REE patterns in the
211	associated basalts of the group are linear, negative Eu anomalies are absent, and HREE
212	define a steeper slope [(Tb/Yb) _n ~2] (Fig. 6B; Dostal et al., 2016).
213	According to their primitive mantle-normalized patterns, the felsic rocks are more
214	enriched in both highly and moderately incompatible elements than the basalts (Fig. 7).
215	The rhyolites display depletion in Ba, Sr, Ti and Eu, which suggests fractionation of
216	feldspars and Fe-Ti oxides (Fig. 7), and which contrasts with the basalts. The felsic rocks
217	also show negative Nb and Ta anomalies. The trace element patterns of some of these
218	rocks resemble those of the continental crust (e.g., Rudnick and Gao, 2003).
219	
220	
221	Isotopes
222	
223	$\mathcal{E}_{Nd}(t)$ values for the DCG rhyolites range from +0.73 to +3.37 (t=421 Ma). These
224	values are notably higher that those of felsic volcanic rocks in the Tobique Zone (Dostal
225	et al. 2020), but they are on average lower than those of the associated basalts (Table 1).
226	They are also lower than values for the contemporaneous depleted mantle. The depleted
227	mantle model age (T_{DM} ; after De Paolo, 1988) of the DCG rhyolites vary between 0.7 and
228	1.0 Ga, and are slightly older than those of the basalts (0.65 - 0.8 Ga), but younger than
229	those of felsic volcanic rocks in the Tobique Group (0.9 - 1.2 Ga). The DCG rhyolites

230	also have lower 147 Sm/ 144 Nd ratios (0.1196 - 0.1337) compared to the basalts (0.1400 -
231	0.1475).
232	
233	
234	Discussion
235	
236	Zircon saturation thermometry
237	
238	The temperature of zircon saturation $(T_{Zr}^{o}C)$ in felsic magmas has been used to
239	characterize various felsic rocks in terms of their origin and thermal history (Miller et al.,
240	2003; Dostal et al. 2015; Xia et al., 2016; Murphy et al., 2018). For example, Miller et al.
241	(2003) differentiate "hot" granites, which are assumed to be generated by anhydrous
242	melting at high temperature (T_{Zr} >800°C), from "cold" granites (T_{Zr} <800°C), which were
243	derived from a crustal source in water-fluxed settings (Collins et al., 2016). The
244	temperature at which zircon starts to crystallize is related to major element composition
245	as well as Zr concentrations. The relationship was tested experimentally and is expressed
246	by the M value of Watson and Harrison (1983). Within an experimental range of M
247	values (i.e. M=1.3 -1.9), the temperature estimates may be useful for petrogenetic
248	considerations (Hanchar and Watson, 2003; Collins et al., 2016). Values of M, as
249	calculated in accordance with Boehnke et al. (2013), are within the experimental range of
250	Watson and Harrison (1983) for most of the DCG felsic rocks, indicating that the rocks
251	can provide meaningful temperature estimates (Table 2). The temperature estimates range
252	from 845°C to 1047°C, with an average value of 929°C (\pm 64°C s.d.). This relatively

- wide temperature range could in part be related to magma evolution in shallow crust
 (fractionation, alteration, host rock assimilation). Hence, the average or maximum values
 are considered to be more diagnostic (Murphy et al., 2018).
- 256 Our results suggest that the initial magmatic temperature was well above 800°C,
- and that the DCG rhyolites therefore issued from a "hot" felsic melt (sensu Miller et al.,
- 258 2003). T_{Zr} (°C) values were also calculated for felsic volcanic rocks of the TG in order to
- assess possible petrogenetic similarities or dissimilarities between the two suites.
- 260 Rhyolite samples from the TG (Dostal et al., 2020) provide temperature estimates that
- range from 797°C to 864°C, with an average of 824°C. Results from both suites are
- 262 consistent with the relatively hot melting temperature of the anhydrous lower crust
- 263 (Huppert and Sparks, 1988; Annen et al., 2006, 2015). Although there is an overlap in
- 264 zircon saturation temperatures between the TG and DCG rhyolites, the latter have a
- higher average value, which is consistent with the conclusion that the TG basalts were
- 266 generated at a shallower depth than those of the DCG (Dostal et al., 2016). The DCG
- 267 rhyolites also bear higher $\mathcal{E}_{Nd}(t)$ values than those of the TG suites (Dostal et al., 2020),
- 268 which suggests that the DCG rhyolites had a larger proportion of mantle-derived material
- at their source.
- 270
- 271 Monazite saturation thermometry
- 272

To verify the relatively high crystallization temperature that is estimated for the DCG rhyolites, monazite saturation temperatures were calculated by relating the concentration of light REE to the bulk composition of the magma. The calculations 276 (based on Montel, 1993) yielded an average temperature of $853^{\circ}C$ (± 40°C) for the DCG 277 rhyolites (Table 2), which is consistent with monazite crystallization occurring after that 278 of zircon, but which still suggests a relatively high crystallization temperature. All these 279 temperature estimates are similar to modeled temperatures of partial melting of the crust 280 associated with basalt injection (Annen and Sparks, 2002).

281

282 Petrogenesis

283

284 Unlike Silurian (Llandovery to Ludlow) volcanic rocks of the Coastal volcanic 285 belt in Maine and southern New Brunswick, which are typical continental arc calc-286 alkaline suites ranging from mafic to felsic types (Llamas and Hepburn, 2013), rocks of 287 the Chaleur Bay Synclinorium farther inland are bimodal and include rift-related 288 continental tholeiites inferred to be derived from the subcontinental lithospheric mantle 289 (Dostal et al., 2016). However, the origin of the DCG rhyolitic rocks and of many other 290 felsic rocks that are part of compositionally bimodal suites has been debated. 291 Various models for the origin of bimodal suites have been discussed for decades 292 (e.g., Bowen, 1928; Barbarin, 1999; Riley et al., 2001). The two main models are based 293 on either crystal fractionation or crustal melting. The first model (e.g., Lacasse et al. 294 2007; Waight et al., 2007) assumes a derivation of felsic magma by the extensive crystal 295 fractionation of basaltic magma (up to 90%), or by a combined process of assimilation 296 and fractional crystallization. The second model invokes partial melting of crustal rocks 297 triggered by heating from underplated mantle-derived basaltic magmas (e.g., Huppert and 298 Sparks, 1988). The latter model is frequently used (e.g., Annen and Sparks, 2002) to

explain the formation of large felsic magma reservoirs, as fractional crystallization wouldrequire an unreasonably large volume of basaltic parental magma.

301 Variations in FeO*/MgO versus TiO₂ (Fig. 8) show that there is no obvious 302 relationship between the DCG mafic rocks, which display a typical tholeiitic fractionation 303 trend, and the DCG felsic rocks, which show a calc-alkaline trend. This and other 304 geochemical characteristics of these rocks, such as contrasting Tb/Yb and Th/Nb ratios as 305 well as significant differences in Nd isotopic values (Table 1), suggest that the felsic 306 rocks were not derived from the mafic rocks by crystal fractionation. Thus, the paucity of 307 intermediate rock types (Daly gap), large volume of felsic rocks relative to associated 308 mafic rocks, and contrasting geochemical and Nd isotopic characteristics between the two 309 rock-types are consistent with a derivation from different sources. This process can also 310 account for some compositional variations within felsic magma bodies (Altherr et al., 311 2000; Shellnutt et al. 2011), as felsic magma heterogeneity may, in part, reflect 312 heterogeneity of the crustal source. 313 As noted earlier, the DCG felsic rocks are similar in composition to A-type (i.e. 314 within plate) granitic rocks. Eby (1992) noted that A-type granitic rocks can be 315 subdivided into at least two types. The parental magma of granites in the A1 subgroup is 316 mafic and derived from a mantle source. A1 granites have incompatible trace elemental 317 ratios that are similar to those of ocean-island basalts. The compositionally diverse A2 318 subgroup is sourced from the lithosphere, and is characterized by elemental ratios that are 319 similar to those of continental crust or island arc basalts. The DCG rhyolites have 320 affinities with A2-type granites (Fig. 9). Many such granites are considered to represent 321 magmas derived from the lower to middle crust (Eby 1992; King et al., 1997).

322 Some geochemical variation trends in the DCG rhyolitic rocks are likely related to 323 differentiation processes, particularly fractional crystallization that occurred after the 324 magma was formed. In addition to fractionation of major phases, mainly feldspars and 325 minor ferromagnesian minerals and Fe-Ti oxides, accessory minerals also played a role 326 during fractional crystallization as they control much of the REE variation. A graph of 327 (La/Yb)_n versus La (Fig. 10A) suggests that fractionation of REE, the bulk of which is 328 hosted by accessory phases, was dominated by the crystallization of monazite. Although 329 fractional crystallization involved the crystallization of feldspars, variations in Ba and Sr, 330 which are elements that are preferentially hosted by feldspars, do not correlate with 331 negative Eu anomalies (Eu/Eu*). This may indicate buffering from the activity of fluids. 332 Two distinct trends on the Ba versus Eu/Eu* diagram (Fig. 11A) suggest the existence of 333 a complex magma chamber, although all the DCG rhyolites have similar evolutions. 334 In addition to fractional crystallization, a variable degree of partial melting can 335 also generate variations in rock composition. Schiano et al. (2010) suggested that partial 336 melting and fractional crystallization processes can be identified from systematic changes 337 in incompatible trace element concentrations and their ratios. The Ba/Zr versus Ba plot 338 (Fig. 11B) shows that some samples were derived from different degrees of partial 339 melting than the majority of the rhyolites. However, some significant compositional 340 variations in the rhyolitic rocks cannot be attributed to fractional crystallization or to a 341 variable degree of partial melting (e.g., variations in trace element ratios and Nd isotopic values), but rather point to a heterogeneous source. The Th/Nb versus Zr graph (Fig. 342 343 10B) is useful for an evaluation of source heterogeneity: Th/Nb, which is not 344 significantly affected by fractional crystallization, is plotted against an incompatible trace element (Zr) that increases in concentration with fractionation. The variation in Th/Nb
ratios (Fig. 10B) therefore likely reflect crustal source heterogeneity for the DCG
rhyolites. The plot also implies that assimilation-fractional crystallization (AFC)
processes, which lead to an enrichment trend that is intermediate between fractional
crystallization and source heterogeneity vectors, do not appear to have played a
significant role in the genesis of the rhyolites.

351 The DCG rhyolitic rocks likely represent melts that were derived from crustal 352 material. This conclusion is also supported by their distribution patterns in primitive 353 mantle normalized plots, which display depletions in Nb, Ta, Ti, Eu, Ba, and Sr (Fig. 7), 354 altogether indicating that the DCG felsic rocks have been sourced from continental crust. 355 Nd model ages for the DCG rhyolites are Neoproterozoic (Table 1), which is consistent 356 with the age of Ganderian basement rocks (van Staal et al., 1996, 2012; Dostal et al., 357 2016, 2020; Fig. 12). Moreover, the $\mathcal{E}_{Nd}(t)$ values overlap the isotope envelope of 358 Avalonian crustal values (Fig. 12), which suggests that Ganderia and Avalonia have a 359 common Neoproterozoic history and a similar lower/middle crust (Dostal et al., 2020). 360 The Nd isotopic data also shows that the crustal source of the DCG rhyolites was similar 361 but distinct from that of the TG rhyolites. 362 Murphy et al. (2018) argued that partial melting of an anhydrous lower crustal

source produced the A-type magmas of northern Nova Scotia, in West Avalonia. A
similar process and source can be invoked for the DCG rhyolites. Partial melting of
various crustal reservoirs has been invoked to explain the chemical characteristics of "Atype" felsic rocks, such as a charnockitic lower crust, an I-type granite precursor, calcalkaline amphibole-bearing tonalite, mafic underplated rocks, and some others (e.g.,

368	Collins et al., 1982; Creaser et al., 1991; King et al., 1997; Bonin, 2007). Dostal et al.
369	(2020) inferred that partial melts of granodioritic/tonalitic and charnockitic rocks or their
370	sedimentary or metamorphic equivalents have a major element composition that is
371	similar to that of the A2-type TG felsic volcanic rocks, and that either could represent the
372	parent material. Similar crustal source possibilities can be suggested for the DCG felsic
373	rocks. The continental crust is compositionally diverse and includes both juvenile and
374	recycled material. The Neoproterozoic T_{DM} values for the DCG rhyolites suggest an
375	ancient source that probably experienced episodic recycling, such as in a subduction zone
376	or at the root of a continent-continent collision. Eby (1992) suggested that these processes
377	may contribute to the "within-plate" signature of A2-type felsic rocks.
378	Continental crust can melt as a result of repeated injections of hot mafic magmas
379	(Huppert and Sparks, 1988; Annen and Sparks, 2002; Annen et al. 2006). The
380	temperature of the crust may exceed 800°C during continuous basalt injection - hot
381	enough to create partial melts (Annen and Sparks, 2002). Thus, rising mafic magma may
382	have triggered melting of the crust from which the felsic rocks inherited their
383	geochemical characteristics. This process is common during lithospheric extension and is
384	a consequence of magmatic underplating (e.g. Huppert and Sparks, 1988). Hence, dry
385	partial melting of the heterogeneous lower crust of Ganderia most likely produced the
386	primary melt that sourced the DCG rhyolites. However, prior to its eruption, this primary
387	melt may have resided in plutonic bodies such as the compositionally similar and almost
388	coeval Landry Brook and Dickie Brook plutons, which intrude the DCG in the Chaleur
389	Zone (Fig. 2) (Pilote et al., 2013; Wilson and Kamo, 2016).

Tectonic Setting

394	Following accretion of Ganderia's leading edge (the Popelogan arc) to Laurentia
395	in the Upper Ordovician, the Tetagouche-Exploits back-arc basin that separated
396	Ganderia's leading and trailing segments began to close, culminating with the ~425 Ma
397	Salinic Orogeny (van Staal et al., 2009; Zagorevski et al., 2010; Wilson et al., 2017) (Fig.
398	13 A, B). At 422.3±0.3 Ma (Wilson and Kamo, 2008), the DCG provides some of the
399	earliest record of extrusions related to post-Salinic extensional magmatism (sensu Dostal
400	et al., 2020) in the northern Appalachians. A possible equivalent is the Stony Lake
401	Rhyolite, which lies above the Salinic unconformity in Newfoundland, and which was
402	roughly dated at 423+3/-2 Ma by Dunning et al. (1990). This volcanism has been
403	associated with post-orogenic relaxation and breakoff of the Tetagouche-Exploits slab
404	(van Staal et al., 2009; Wilson et al., 2017) (Fig. 13C). Mafic eruptions in the DCG may
405	be linked to the ponding of asthenospheric melt in the rising root of the orogen, which
406	resulted in high-degree partial melting of the subcontinental lithospheric mantle (Dostal
407	et al., 2016) (Fig. 13C). Evidence for high heat flow during generation of the DCG felsic
408	melts suggests that its lower crustal source was located in the focus zone of mafic
409	upwelling and crustal underplating (Fig. 13C). Because it was associated with a post-
410	orogenic rise of the lithosphere, initial post-Salinic magmatism was subaerial and limited
411	in extent to a narrow, orogen-parallel belt.
412	In New Brunswick, volcanism in the early part of the Pridolian was constrained to

413 the Chaleur Zone (Wilson et al., 2017). Later in the Pridolian, extensional collapse of the

414	orogenic root (van Staal and de Roo, 1995) resulted in a widening of both the sub-
415	lithospheric and sub-crustal areas of underplating. This led to an expansion of the area of
416	volcanism into the Tobique Zone, thus triggering the onset of TG volcanism (418.6 -
417	420.8 Ma; Wilson et al, 2017) in a separate volcanic centre (Fig. 13D). Although these
418	two zones are currently located roughly along-strike from each other, it is inferred that
419	the Chaleur Zone lay farther west in relation to the Tobique Zone prior to post-Silurian
420	dextral faulting along the Rocky Brook-Millstream fault system (Wilson, 2017).
421	However, emplacement of both volcanic belts was originally parallel to the southwest-
422	northeast-trending Salinic grain of the orogen (Fig. 13D).
423	Evidence for lower heat flow during generation of the TG felsic melts compared
424	to the DCG melts suggests that the lower crustal source of the TG volcanic rocks was
425	located farther away from the locus of mafic upwelling and crustal underplating (Fig.
426	13D). This is consistent with Nd isotopic data, which imply that felsic rocks of the DCG
427	and TG issued from two slightly distinct crustal sources.
428	
429	
430	Conclusions
431	
432	Following the Wenlock-Ludlow Salinic Orogeny (Fig. 13A, B), post-orogenic
433	relaxation and breakoff of the Tetagouche-Exploits slab resulted in the development of

- 434 extensional tectonics in Ganderian rocks of the northern Appalachian orogen, and
- 435 eventually led to the emplacement of Pridolian to lowermost Emsian bimodal suites in a
- 436 discontinuous, orogen-parallel belt stretching from Maine to eastern Quebec. The ~422 -

420 Ma Dickie Cove Group of northern New Brunswick provides the earliest record of
this long period of extensional volcanism, which, in the early part of the Pridolian, was
constrained to the Chaleur Zone in the northern part of the Chaleur Bay Synclinorium
(Fig. 13C).

441 Rhyolites are the dominant felsic rock type in the voluminous bimodal volcanic 442 suite of the Dickie Cove Group. Geochemical evidence suggests that these felsic rocks, 443 which show a calc-alkaline trend, were not produced by fractional crystallization of 444 associated mafic melts, which show a tholeiitic trend. The geochemical data indicate that 445 the felsic melts, which plot as "within-plate", A2-type melts on various discrimination 446 diagrams, were likely sourced from heterogeneous, Neoproterozoic lower crust, and that 447 they were generated by dehydration melting triggered by heat derived from the associated 448 mafic magma. Saturation thermometry has yielded average zircon and monazite 449 crystallization temperature estimates for the rhyolitic rocks that are well above 900°C and 450 800°C, respectively. Parent melts of the DCG rhyolites underwent fractional 451 crystallization in a complex of magma chambers prior to erupting in sub-aerial 452 conditions.

The $\mathcal{E}_{Nd}(t)$ values of the DCG rhyolites are positive (+0.73 to +3.37), but lower than those of the associated basalts. Nd model ages are Neoproterozoic (0.7 - 1.0 Ga), which is typical of Ganderian and Avalonian crust. The data also suggest that the lower crust of Ganderia is similar to that of Avalonia in northern mainland Nova Scotia. This is consistent with Nd isotopic data from some Silurian to Lower Devonian granitic and felsic rocks in other areas of Ganderia (e.g., Whalen et al., 1994, 1996), which also plot into the Avalonian envelope (Fig. 12; Dostal et al., 2020). The similarity of lower crust

460	composition in both microcontinents suggests a common Neoproterozoic history and is
461	consistent with their inferred origin as continental blocks rifted from neighboring parts of
462	Gondwana (e.g., van Staal and Barr, 2012; van Staal et al., 2012; Waldron et al., 2014).
463	
464	
465	Acknowledgements
466	
467	This research was supported by NSERC (Canada) Discovery grants to J.D and P.J. and
468	by New Brunswick Department of Energy and Resource Development, Geological
469	Surveys Branch. We thank reviewers Jeff Pollock and Joe Whalen, as well as co-editor
470	Brendan Murphy for constructive reviews that significantly improved this manuscript.
471	
472	
473	References
474	
475	Altherr, R., Holl, A., Hegner, E., Langer, C., Kreuzer, H., 2000. High-potassium, calc-
476	alkaline I-type plutonism in the European Variscides: northern Vosges (France) and
477	northern Schwartzwald (Germany). Lithos 50, 487-533.
478	
479	Annen C., Sparks, R.S.J,. 2002. Effects of repetitive emplacement of basaltic intrusions
480	on thermal evolution and melt generation in the crust. Earth Planetary Science Letters
481	203, 937-955.
482	

483	Annen, C., Blundy, J.D., Sparks, R.S.J., 2006. The genesis of intermediate and silicic
484	magmas in deep crustal hot zones. Journal of Petrology 47, 505-539.
485	
486	Annen, C., Blundy, J.D., Leuthold, J., Sparks, R.S.J., 2015. Construction and evolution of

- 487 igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230, 206-
- 488 221.
- 489

- 490 Barbarian, B., 1999. A review of the relationships between granitoid types, their origins
- 491 and their geodynamic environments. Lithos 46, 605-626.
- 492
- 493 Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., Schmitt, A.K., 2013. Zircon
- 494 saturation revisited. Chemical Geology 351, 324-334.
- 495
- 496 Bonin, B., 2007. A-type granites and related rocks: evolution of a concept, problems and 497 prospects. Lithos 97, 1-29.
- 498 Bowen, N.L., 1928. Evolution of Igneous Rocks. Princeton University Press, Princeton. 499
- 500 Collins, W.J., Huang, H.Q., Jiang, X., 2016. Water-fluxed crustal melting produces
- 501 Cordilleran batholiths. Geology 44, 143-146.
- 502
- 503 Collins, W.J., Beams, S.D., White, A.J.R., Chappell, B.W., 1982. Nature and origin of A-
- 504 type granites with particular reference to southeastern Australia. Contributions to
- 505 Mineralogy and Petrology 80, 189-200.

507 Creaser, R. A., Price, R.C., Warmald, R. J., 1991. A-type granites revisited: Assessment
508 of a residual-source model. Geology 19, 163-166.

509

- 510 DePaolo, D.J., 1988. Neodymium Isotope Geochemistry: An Introduction: Berlin,
- 511 Springer Verlag, 187 p.

512

- 513 Dostal, J., Wilson, R.A., Keppie, J.D., 1989. Geochemistry of Siluro-Devonian Tobique
- 514 volcanic belt in northern and central New Brunswick (Canada): tectonic implications.
- 515 Canadian Journal of Earth Sciences 26, 1282-1296.
- 516
- 517 Dostal, J., Owen, J.V., Shellnutt, J.G., Keppie, J.D., Gerel, O., Corney, R., 2015.
- 518 Petrogenesis of the Triassic Bayn-Ulan alkaline granitic pluton in the North Gobi rift of
- 519 central Mongolia: implications for the evolution of the Early Mesozoic granitoid
- 520 magmatism in the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 109, 50-

521 522 62.

- 523 Dostal, J., Keppie, J.D., Wilson, R.A., 2016. Nd isotopic and trace element constraints on
- 524 the source of Silurian-Devonian mafic lavas in the Chaleur Bay Synclinorium of New
- 525 Brunswick (Canada): Tectonic implications. Tectonophysics 681, 364-375.

- 527 Dostal, J., Wilson, R.A., Jutras, P., 2020. Petrogenesis of Siluro-Devonian rhyolites of
- 528 the Tobique Group in the northwestern Appalachians (northern New Brunswick,

- 529 Canada): Tectonic implications for the accretion history of peri-Gondwanan terranes
- along the Laurentian margin. Geological Society of London, Special Publication (inpress).
- 532
- 533 Dunning, G.R., O'Brien, S.J., Colman-Sadd, S.P., Blackwood, R.F., Dickson, W.L.,
- 534 O'Neill, P.P., Krogh, T.E., 1990. Silurian Orogeny in the Newfoundland Appalachians.
- 535 Journal of Geology 98, 895-913.
- 536
- Eby, N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic
 implications. Geology 20, 641-644.
- 539
- 540 El-Bialy, M.Z., Hassen, I.S., 2012. The late Edicaran (580-590 Ma) onset of anorogenic
- 541 alkaline magmatism in the Arabian-Nubian Shield: Katherina A-type rhyolites of Gabal
- 542 Ma'ain, Sinai, Egypt. Precambrian Research 216-219, 1-22.
- 543
- 544 Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D., 2001. A
- 545 geochemical classification for granitic rocks. Journal of Petrology 42, 2033-2048.
- 546
- 547 Hanchar, J.M., Watson, E.B., 2003. Zircon saturation thermometry. Reviews in
- 548 Mineralogy and Geochemistry 53, 89-112.
- 549
- 550 Huppert, H.E., Sparks, R.S.J., 1988. The generation of granite magmas by intrusions of
- basalts into continental crust. Journal of Petrology 29, 599-624.

553	Irrinki, R.R., 1990. Geology of the Charlo area; Restigouche Count, New Brunswick.
554	Report of Investigations, New Brunswick, Mineral Resources Branch, Report 24, 118 p.
555	
556	Keppie, J. D., Dostal, J., Murphy, J. B., Cousens, B. L., 1997. Palaeozoic within-plate
557	volcanic rocks in Nova Scotia (Canada) reinterpretation: isotopic constraints on
558	magmatic source and paleocontinental reconstructions. Geological Magazine 134, 425-
559	447.
560	
561	Keppie, J.D., Murphy, J.B., Nance, R.D., Dostal, J., 2012. Mesoproterozoic Oaxaquia-
562	type basement in peri-Gondwanan terranes of Mexico, the Appalachians and Europe:
563	TDM age constraints on extent and significance. International Geology Review 54, 313-
564	324.
565	
566	King, P.L., White, A.J.R., Chappell, B.W., Allen, C.M., 1997. Characterization and
567	origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia.
568	Journal of Petrology 38, 371-391.
569	
570	Lacasse, C., Sigurdsson, H., Carey, S.N., Johannesson, H., Thomas, I.E., Rogers, N.W.,
571	2007. Bimodal volcanism at the Krafla subglacial caldera, Iceland: insight into the
572	geochemistry and petrogenesis of rhyolitic magmas. Bulletin of Volcanology 69, 373-
573	399.
574	

575	Llamas, A.P., Hepburn J.C., 2013. Geochemistry of Silurian-Devonian volcanic rocks in
576	the Coastal Volcanic belt, Machias-Eastport area, Maine: Evidence for a pre-Acadian arc.
577	Geological Society of America Bulletin 125, 1930-1942.
578	
579	McKenzie, D.P., O'Nions, R.K., 1991. Partial melt distributions from inversion of rare
580	earth element concentrations. Journal of Petrology 32, 1021-1091.
581	
582	Miller, C.F., McDowell, S.M., Mapes, R.W., 2003. Hot and cold granites? Implications
583	of zircon saturation temperatures and preservation of inheritance. Geology 31, 529-532.
584	
585	Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins.
586	American Journal of Science 274, 321-355.
587	
588	Montel, J.M., 1993. A model for monazite/melt equilibrium and application to the
589	generation of granitic magmas. Chemical Geology 110, 127-146.
590	
591	Mossman, D.J., Bachinski, D. J., 1972. Zeolite facies metamorphism in the Silurian-
592	Devonian fold belt of northeastern New Brunswick. Canadian Journal of Earth Sciences
593	9, 1703-1709.
594	
595	Murphy, J.B., Dostal, J., Keppie, J.D., 2008. Neoproterozoic-Early Devonian magmatism
596	in the Antigonish Highlands, Avalon terrane, Nova Scotia: tracking the evolution of the

597 mantle and crustal sources during the evolution of the Rheic Ocean. Tectonophysics 461,598 181-201.

600	Murphy, J.	B., I	Dostal, J.,	Gutierrez-	Alonso, G	i., Kep	pie, J.D.	, 2011.	Early	Jurassic
-----	------------	-------	-------------	------------	-----------	---------	-----------	---------	-------	----------

- 601 magmatism on the northern margin of CAMP: derivation from a Proterozoic sub-
- 602 continental lithospheric mantle. Lithos 123, 158-164.
- 603

```
Murphy, J.B., Shellnutt, J.G., Collins, W.J., 2018. Late Neoproterozoic to Carboniferous
```

- 605 genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting
- 606 of anhydrous lower crust in contrasting tectonic environments. International Journal of
- 607 Earth Sciences 107, 587-599.
- 608
- 609 Pilote, J.L., Barr, S.M., Wilson, R.A., McClenaghan, S., Kamo, S., McNicoll, V.J.,
- 610 Bevier, M.L., 2013. Precise age and petrology of Silurian-Devonian plutons in the
- 611 Benjamin River-Charlo area, northern New Brunswick. Atlantic Geology 48, 97-123.
- 612
- 613 Pollock, J.C., Hibbard, J.P., van Staal, C.R., 2012. A paleogeographical review of the
- 614 peri-Gondwanan realm of the Appalachian orogen. Canadian Journal of Earth Sciences615 49, 259-288.
- 616
- 617 Pollock, J.C., Sylvester, P.J., Barr, S.M. 2015. Lu-Hf zircon and Sm-Nd whole-rock
- 618 isotope constraints on the extent of juvenile arc crust in the Avalonia: examples from

- 620 181.
- 621
- 622 Riley, T.R., Lear, P.T., Pankhurst, R.J., Harris, C., 2001. Origins of large volume
- 623 rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. Journal

Newfoundland and Nova Scotia, Canada. Canadian Journal of Earth Sciences 52, 161-

- 624 of Petrology 12, 1043-1065.
- 625
- Rodgers, J., 1970. The Tectonics of the Appalachians. New York, John Wiley and Sons,271 p.
- 628
- 629 Rudnick, R.L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R.L.
- 630 (Ed.) The Crust. Treatise on Geochemistry, 3, 1-64.
- 631
- 632 Schiano, P., Monzier, M., Eissen, J.P., Martin, H., Koga, K.T., 2010. Simple mixing as
- 633 the major control on the evolution of volcanic suites in the Ecuadorian Andes.
- 634 Contributions to Mineralogy and Petrology 160, 297-312.
- 635
- 636 Shellnutt, J.G., Jahn, B.M., Zhou, M.F., 2011. Crustal-derived granites in the Panzhihua
- 637 region, SW China: Implications for felsic magmatism in the Emeishan Large Igneous
- 638 province. Lithos 123, 145-157.
- 639
- 640 Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic
- basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry,

M.J. (eds.) Magmatism in Ocean Basins. Geological Society London Special Publication
42, 313-345.

- van Staal, C.R., de Roo, J.A. 1995. Mid-Paleozoic tectonic evolution of the Appalachian
- 646 Central Mobile Belt in northern New Brunswick, Canada: Collision, extensional collapse
- 647 and dextral transpression. In: Hibbard, J.P., van Staal, C.R., Cawood, P.A. (eds.). Current
- 648 Perspectives in the Appalachian-Caledonian Orogen. Geological Association of Canada,
- 649 Special Paper 41, 367-389.
- 650
- van Staal, C.R., Hatcher, R.D., Jr., 2010. Global setting of Ordovician orogenesis. In:
- 652 Finney, S.C., Berry, W.B.N. (eds.) The Ordovician Earth System. Geological Society of
- America, Special Paper 466, 1-11.
- 654
- van Staal, C.R., Barr, S.M., 2012. Lithospheric architecture and tectonic evolution of the
- 656 Canadian Appalachians and associated Atlantic margin. Chapter 2. In: Percival, J.A.,
- 657 Cook, F.A., Clowes, R.M. (eds.). Tectonic Styles in Canada: the LITHOPROBE
- 658 Perspective. Geological Association of Canada, Special Paper 49, 41-95.
- 659
- van Staal, C.R., Sullivan, R.W., Whalen, J.B., 1996. Provenance and tectonic history of
- the Gander Zone in the Caledonian/Appalachian orogen: Implications for the origin and
- assembly of Avalon. In: Nance, R.D., Thompson, M.D. (eds.) Avalonian and Related
- 663 Peri-Gondwanan Terranes of the Circum-North Atlantic: Geological Society of America
- 664 Special Papers 304, 347-367.

666	van Staal, C.R., Whalen, J.B., Valverde-Vaquero, P., Zagorevski, A., Rogers, N., 2009.
667	Pre Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of
668	the northern Appalachians. In: Murphy, J. B., Keppie, J.D., Hynes, A.J. (eds.) Ancient
669	Orogens and Modern Analogues. Geological Society of London Special Publication 327,
670	271-316.
671	
672	van Staal, C.R., Barr, S.M., Murphy, J.B., 2012. Provenance and tectonic evolution of
673	Ganderia: Constraints on the evolution of the Iapetus and Rheic Oceans. Geology 40,
674	987–990.
675	
676	Waight, T.E., Wiebe, R.A., Krogstad, E.J., 2007. Isotopic evidence for multiple
677	contributions to felsic magma chambers: Gouldsboro, Coastal Maine. Lithos 93, 234-247
678	
679	Waldron, J.W.F., Schofield, D.I., Murphy, J.B., Thomas, C.W., 2014. How was the
680	Iapetus Ocean infected with subduction? Geology 42, 1095-1098, doi:10.1130/G36194.1
681	
682	Walker, J.A., McCutcheon, S.R., 1995. Siluro-Devonian stratigraphy of the Chaleur Bay
683	Synclinorium, northern New Brunswick. In: Current Research 1994. New Brunswick
684	Department of Natural Resources and Energy, Minerals and Energy Division,
685	Miscellaneous Report 18, 225-244.
686	

687	Wang, F., Li, Q., Liu, Y., Jiang, S., Chen, C., 2019. Geochronology of magmatism and
688	mineralization in the Dongbulage Mo-polymetallic deposit, Northwest China:
689	Implications for the timing of mineralization and ore genesis. Minerals 9, 255.
690	Doi:10.3390/min9050255.
691	
692	Watson, E.B., Harrison, T.M., 1983. Zircon saturation revisited: temperature and
693	composition effects in a variety of crustal magma types. Earth Planetary Science Letters
694	64, 295-304.
695	
696	Whalen, J. B., Jenner, G.A., Hegner, E., Gariepy, C., Longstaffe, F.J., 1994. Geochemical
697	and isotopic (Nd, O and Pb) constraints on granite sources in the Humber and Dunnage
698	zone, Gaspesie, Quebec, and New Brunswick: implications for tectonics and crustal
699	structure. Canadian Journal of Earth Sciences 31, 323-340.
700	
701	Whalen, J.B., Jenner, G.A., Longstaffe, F.J., Hegner, E., 1996. Nature and evolution of
702	the eastern margin of Iapetus: geochemical and isotopic constraints from Siluro-Devonian
703	granitoid plutons in the New Brunswick Appalachians. Canadian Journal of Earth
704	Sciences 33, 140-155.

706 Whalen, J.B., Hildebrand, R.S., 2019. Trace element discrimination of arc, slab failure,

and A-type granitic rocks. Lithos, 348-349.

709	Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites; geochemical
710	characteristics, discrimination and petrogenesis. Contributions to Mineralogy and
711	Petrology, 95, 407-419.
712	
713	Wilson, R.A., 2017. The Middle Paleozoic rocks of northern and western New
714	Brunswick, Canada. New Brunswick Department of Energy and Resource Development,
715	Geological Surveys Branch, Memoir 4, 319 p.
716	
717	Wilson, R.A., Kamo, S., 2008. New U-Pb ages from the Chaleurs and Dalhousie groups:
718	Implications for regional correlations and tectonic evolution of northern New Brunswick.
719	In: Martin, G.L. (ed.). Geological Investigations in New Brunswick for 2007. New
720	Brunswick Department of Natural Resources; Minerals, Policy and Planning Division,
721	Mineral Resource Report 2008-1, 55-77.
722	
723	Wilson, R.A., Kamo, S.L., 2012. The Salinic Orogeny in northern New Brunswick:
724	Geochronological constraints and implications for Silurian stratigraphic nomenclature.
725	Canadian Journal of Earth Sciences 49, 222-238.
726	
727	Wilson, R.A., Kamo, S.L. 2016. Geochronology and lithogeochemistry of granitoid rocks
728	from the central part of the Central plutonic belt, New Brunswick, Canada: implications
729	for Sn-W-Mo exploration. Atlantic Geology 52, 125-167.

731	Wilson, R.A., van Staal, C.R., Kamo, S. L., 2017. Rapid transition from the Salinic to
732	Acadian orogenic cycles in the Northern Appalachian orogen: evidence from Northern
733	New Brunswick, Canada. American Journal of Science 317, 448-481.
734	
735	Wilson, R.A., Burden, E.T., Bertrand, R., Asselin, E., McCracken, A.D., 2004.
736	Stratigraphy and tectono-sedimentary evolution of the Late Ordovician to Middle
737	Devonian Gaspé Belt in northern New Brunswick: Evidence from the Restigouche area.
738	Canadian Journal of Earth Sciences 41, 527-551.
739	
740	Wilson, R.A., Kamo, S., Burden, E.T., 2005. Geology of the Val d'Amour Formation:
741	Revisiting the type area of the Dalhousie Group, northern New Brunswick. In: Martin,
742	G.L. (ed.) Geological Investigations in New Brunswick for 2004. New Brunswick
743	Department of Natural Resources; Minerals, Policy and Planning Division, Mineral
744	Resource Report 2005-1, 167-212.
745	
746	Winchester, J.A. and Floyd. P.A. 1977. Geochemical discrimination of different magma
747	series and their differentiation products using immobile elements. Chemical Geology, 20,
748	325-343.
749	
750	Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Sun, D.Y., 2003. Highly
751	fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66,
752	241-273.
753	

754	Xia, Y., Xu, X., Liu, L., 2016. Transition from adakitic to bimodal magmatism induced
755	by the paleo-Pacific plate subduction and slab rollback beneath SE China: evidence from
756	petrogenesis and tectonic setting of the dike swarms. Lithos 244, 182-204.
757	
758	Zagorevski, A., van Staal, C.R., Rogers, N., McNicoll, V., Dunning, G.R., Pollock, J.C.,
759	2010. Middle Cambrian to Ordovician arc-backarc development on the leading edge of
760	Ganderia, Newfoundland Appalachians. In: Tollo, R.P. (ed.) From Rodinia to Pangea:
761	The lithotectonic record of the Appalachian region. Geological Society of America
762	Memoir 206, 367-396.
763	
764	
765	Table captions
766	
767	Table 1. Nd isotopic compositon of volcanic rocks of the Dickie Cove Group.
768	
769	Table 2 Zircon and monazite saturation thermometry estimates of rhyolitic rocks of
770	Dickie Cove Group.
771	
772	
773	Figure captions
774	
775	Figure 1. Major lithotectonic domains of the northern Appalachians (modified after van
776	Staal and Barr, 2012 and Dostal et al., 2016). NB: New Brunswick.

778	Figure 2. (A) Simplified geology of the Chaleur Bay Synclinorium and adjacent inliers in
779	New Brunswick (modified from Wilson et al., 2017). U-Pb zircon dates from Silurian to
780	Lower Devonian felsic volcanic rocks of the Tobique and Dickie Cove groups are
781	indicated, as well as from the Silurian Landry Brook [LB] pluton and Silurian-Lower
782	Devonian Dickie Brook [DB] pluton, both of which intrude the Dickie Cove Group. Data
783	from (1) Wilson and Kamo (2008), (2) Wilson and Kamo (2012), (3) Pilote et al. (2013),
784	and (4) Wilson et al. (2017). (B) Areal extent of the Chaleur and Tobique zones, which
785	are respectively to the north and south of the Rocky Brook - Millstream Fault. (C)
786	Stratigraphic columns showing the age of Silurian to Lower Devonian volcanic rocks of
787	the Dickie Cove, Tobique and Dalhousie groups in the Chaleur Zone and in the northern
788	part of the Tobique Zone.
789	
790	Figure 3. Zr/TiO_2 versus Nb/Y classification diagram for the DCG bimodal suite
791	(modified from Winchester and Floyd, 1977). Fields: TA - Trachyandesite; Alk-Bas -
792	Alkali basalt.
793	
794	Figure 4. Fe* [(FeO*+MgO)] versus SiO ₂ (wt.%) for the DCG rhyolitic rocks
795	showing the separation of ferroan and magnesian rocks (after Frost et al. 2001).
796	
797	Figure 5. (A) 10,000xGa/Al versus Zr (ppm) diagram (after Whalen et al., 1987) for the
798	DCG rhyolitic rocks classifying them as A-type rocks. Fields: I&S field is for I- and S-
799	type granites while the A field is for the A-type granites. (B) Y+Nb (ppm) versus La/Yb

- 800 discrimination diagram of Whalen and Hildebrand (2019) showing the A-type
- 801 characteristics of the DCG felsic volcanic rocks.
- 802
- 803 Figure 6. Chondrite-normalized rare-earth element diagrams for the DCG rocks (A)
- 804 rhyolitic rocks: (B) basaltic rocks (after Dostal et al., 2016). Normalizing values are after
- 805 Sun and McDonough (1989).

- 807 Figure 7. Primitive-mantle normalized incompatible element abundances for the DCG
- 808 rocks: (A) rhyolitic rocks, (B) basaltic rocks (after Dostal et al., 2016). Elements are
- 809 arranged in the order of decreasing incompatibility from left to right. Normalizing values
- 810 are after Sun and McDonough (1989).

811

- 812 Figure 8. TiO₂ (wt.%) versus FeO*/MgO diagram for the DCG rocks. Vectors depict
- 813 tholeiitic and calc-alkali fractionation trends (after Miyashiro, 1974). FeO* total Fe as

814 FeO.

815

816 Figure 9. Y-Nb-Ce diagram for the DCG rhyolitic rocks discriminating between A1 and

817 A2-types of anorgenic granites (Eby, 1992). A1-type anorogenic granites related to ocean

818 island-type sources; A2-type anorogenic granites derived from continental crust sources.

- 820 Figure 10. (A) Chondrite-normalized La/Yb ratio versus La (ppm) diagram for the DCG
- 821 felsic rocks. Fractionation vectors for accessory minerals are after Wu et al. (2003).
- 822 Mineral vectors are based on fractionation of monazite (Mon), allanite (Allan), apatite

823	(Ap), titanite (11t) and zircon (Zr). (B) Variations of Th/Nb versus Zr (ppm) in the DCG
824	rhyolitic rocks showing the vectors for increasing fractional crystallization (FC),
825	combined assimilation-fractional crystallization (AFC) and source heterogeneity
826	(modified after El-Bialy and Hassen, 2012).
827	
828	Figure 11. (A) Variations of Ba (ppm) versus Eu/Eu* in the DCG rhyolitic rocks. Eu
829	anomalies are calculated as (Eu/Eu*) where Eu denotes the chondrite-normalized value
830	and Eu* represents the Eu value expected for a smooth chondrite-normalized REE
831	pattern. (B). Variations of Ba/Zr versus Ba (ppm) in the DCG rhyolitic rocks showing
832	the vectors for fractional crystallization and partial melting (after Schiano et al. 2010 and
833	Wang et al. 2019).
834	

• .•

-

(**m**)

Figure 12. $\mathcal{E}_{Nd}(t)$ versus time plot comparing Sm-Nd isotopic data of the DCG and TG

rhyolitic rocks with basaltic rocks of Avalonia (Keppie et al., 1997; Murphy et al., 2011)

and Ganderia (Dostal et al., 2016, 2020) of Nova Scotia and New Brunswick. Shaded

area (envelope) is the Avalonian basement and SCLM (after Keppie et al., 2012; Murphy

et al., 2011, 2018). The field for Mesoproterozoic rocks is from Murphy et al. (2008).

840 CHUR- chondritic uniform reservoir.

841

000

.

842 Figure 13. Tectonic model for Silurian volcanism in the northern Appalachians. (A)

843 Closure of the Tetagouche-Exploits back-arc basin and deposition of forearc rocks of the

844 Matapedia cover sequence (MCS) following the Upper Ordovician accretion of

845 Ganderia's leading edge (the Popelogan arc) to Laurentia. (B) Closure of the back-arc

DOO

846 basin culminating with the Wenlock-Ludlow Salinic Orogeny and initial deposition of the 847 syn-orogenic Petit Rocher Group in northern New Brunswick. (C) Pridolian mafic 848 magmatism triggered by detachment of the Tetagouche-Exploits slab (TES), post-849 orogenic root relaxation, and partial melting of the sub-continental lithospheric mantle 850 (SCLM). Felsic melts were in turn produced at the base of the crust by heat derived from 851 mafic underplating. The Dickie Cove Group (DCG) rhyolites of the Chaleur Zone were 852 ultimately sourced from felsic diapirs issued from the base of the crust. (D) Extensional 853 collapse of the Salinic root later in the Pridolian, and expansion of the volcanic belt to 854 form a distinct volcanic suite in the Tobique Zone.

Figure 1

Fig. 1

Fig. 2

Figure 3

Figure 4

Figure 5A

Figure 6A

Figure 9

Figure 10A

Figure 10B

Figure 11A

Figure 11B

Figure 12

Table 1. Nd isotopic compositon of volcanic rocks of the Dickie Cove Group

Sample	Age (Ma)	Nd(ppm)	Sm(ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	143 Nd/ 144 Nd _(m)	2σ	¹⁴³ Nd/ ¹⁴⁴ Nd _(i)	E _{Nd(t)}	7 _{DM} (Ма)
207	421	81.49	16.44	0.1219	0.512469	7	0.512133	0.73	958
402	421	36.57	8.09	0.1337	0.512556	7	0.512187	1.79	934
285	421	65.13	12.88	0.1196	0.512598	7	0.512268	3.37	733
629	421	45.21	9.36	0.1253	0.512524	6	0.512179	1.62	901
PB6*	421	23.87	5.82	0.1475	0.512769	6	0.512362	5.21	652
247*	421	28.01	6.48	0.1400	0.512653	7	0.512267	3.35	818
748*	421	18.35	4.25	0.1402	0.512694	6	0.512307	4.14	738

 T_{DM} -depleted mantle model age calculated using the model of DePaolo (1988). $\varepsilon_{Nd(t)}$ - age-corrected values for the 421 Ma);

crystallization age (t =143Nd/144Nd(m)- measured value; 143Nd/144Nd(i) - initial, calculated value;

*-after Dostal et al. (2016)

	177	629	BE3	BE4	BR5	207	266	285	325	402
М	1.28	1.28	1.32	1.4	1.36	1.26	1.59	1.25	0.06	1.33
T _{Zr} °C			873	867	874		1006			869
T _{Mz} °C	869	841	866	859	861	904	913	872	926	822
	482	204	278	C-1	C-3	C-6	C-7	19	23	17
М	1.28	1.17	1.39	1.87	1.86	1.74	1.57	1.27	1.54	1.57
T _{Zr} °C			954	945	919	968	1047		975	845
T _{Mz} °C	808	897	863	807	799	834	867	778	866	817

Table 2 Zircon and monazite saturation thermometry estimates of rhyolitic rocks of Dickie Cove Group

M = [Na+K+2Ca] / [Al*Si]; $T_{Zr}^{o}C$ = zircon saturation temparature calculated according to Boehnke et al. (2013);

TMzoC = monazite saturation temperature calculated according to Montel (1993).